Evidence-Based Practices in GASTROINTESTINAL, COLORECTAL AND HEPATOBILIARY SURGERY

Evidence-based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery is meant to be a practical guide for the young gastrointestinal surgeon or trainee. The book has a global authorship and is focused on evidence-based care and multidisciplinary care of the complex gastrointestinal or liver patient. The chapters are succinct yet comprehensive making it an efficient read. The practical approach of the book will make it a good adjunct to textbooks that address the pathophysiology and basic science of disease processes.

Govind Nandakumar MD FACS FASCRS completed his medical school at Mount Sinai School of Medicine, and completed his basic surgical training at Weill Cornell Medical College, and Memorial Sloan Kettering Cancer Center, New York, USA. He completed his advanced Colorectal Fellowship at Washington University in St. Louis and his upper gastrointestinal and hepatobiliary training at Weill Cornell Medical College, New York, USA. Subsequently, he was recruited to the division of Gastrointestinal Surgery at Weill Cornell Medical College and continues to maintain his faculty appointment at Weill Cornell Medical College. In 2015, he was recruited to Columbia Asia Referral Hospital, Bengaluru, Karnataka, India to build a state-of-the-art integrated gastrointestinal and liver center.

He has an interest in developing innovative and endoluminal approaches to gastrointestinal surgery. He also has a special interest in evidence-based, multidisciplinary and integrated care for gastrointestinal and liver diseases. He has written several articles and book chapters in leading surgical textbooks on topics within gastrointestinal surgery. He is a reputed teacher and has received several teaching and training awards from students, residents and fellows. He is an active member of the SSAT, ASCRS, ACS, SAGES, IHPCA, SSO, IASG and the ASI.

Reviews
"Dr. Govind Nandakumar used his experience at the Center for Advanced Digestive Care (CADC) at the New York Presbyterian Hospital and is in the process of developing a similar center called the Integrated Digestive Liver and Cancer Centre (IDLCC) at Columbia Asia Hospitals, Bengaluru".

"Dr. Govind Nandakumar, an experienced gastrointestinal surgeon, has edited a very comprehensive book on the topic with contributions from an outstanding group of authors. The evidence based approach and the section on "Landmark Trials" gives the necessary background information and yet encourage the reader to constantly review and update the ever changing literature".

"Dr. Govind Nandakumar has chosen a topic and author list to disseminate knowledge in the field of surgical gastroenterology in an evidence-based, comprehensive and yet concise manner. Global authorship, well-defined chapters that address topics of relevance and importance are delivered with clarity."

—Nandakumar Jairam MBBS MS

Available at all medical bookstores or buy online at www.jaypeebrothers.com

JAYPEE BROTHERS
Medical Publishers (P) Ltd.
www.jaypeebrothers.com

Join us on facebook.com/JaypeeMedicalPublishers

Got Full Access with added features at emedicine360.com

Evidence-Based Practices in GASTROINTESTINAL, COLORECTAL AND HEPATOBILIARY SURGERY

Govind Nandakumar

Forewords
Jeffrey W Milsom
Fabrizio Michelassi
Nandakumar Jairam
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery

Editor
Govind Nandakumar MD FACS FASCRS
Chief of Gastrointestinal Surgery and Gastrointestinal Oncosurgery
Columbia Asia Hospitals, Bengaluru, Karnataka, India

Courtesy Faculty
Weill Cornell Medical College
New York, USA

Forewords
Jeffrey W Milsom MD
Fabrizio Michelassi MD
Nandakumar Jairam MBBS MS

The Health Sciences Publisher
New Delhi | London | Panama
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery

First Edition: 2017

Printed at
Dedication

This book is dedicated to my family, teachers and mentors
To my mother and first teacher, Rameshwari Nandakumar who instilled in me the passion to do better every day.
To my father, Dr Nandakumar Jairam who has been a close friend and a mentor throughout my life and career.
To my brother and best friend, Krishna Nandakumar who has helped me through several difficult situations.
To my soul mate and the love of my life, Dr Pallavi Patri who has stood by me and been an immense support.
She has helped me excel in my career and has given meaning to everything I do.
To my children, Dhruv and Maya who have given up family time for the sake of my career.
Thanks to the mentorship and guidance of Dr Fabrizio Michelassi and Dr Jeffrey Milsom.
They were instrumental in training me and guiding me in my career.
A special mention to Dr TS Jairam, my grandfather and the person who has inspired me.
Contributors
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery

Lilian Chen MD
Assistant Professor
Division of Colon and Rectal Surgery
Department of General Surgery
Tufts University School of Medicine
Boston, Massachusetts, USA

Neel P Chudgar MD
Resident Physician in General Surgery
New York Presbyterian Hospital
Well Cornell Medical College
New York, USA

John Creasy MD
Resident
Department of Surgery
Well Cornell Medicine
New York, USA

Gregory Dakin MD FACS
Associate Professor of Surgery
Department of Surgery
Well Cornell Medical College
New York, USA

Desmond M D’Souza MD
Assistant Professor of Surgery
Ohio State University
Columbus, Ohio, USA

Soumitra R Eachempati MD FACS FCCM
Professor of Surgery
Professor of Medicine
Division of Medical Ethics
New York Presbyterian Hospital
Well Cornell Medical College
New York, USA

Michelle E Ernst MS LCGC
Genetic Counselor
Smilow Cancer Genetics and Prevention
Yale-New Haven Hospital
New Haven, Connecticut, USA

Thomas J Fahey III MD
Johnson and Johnson Professor
Vice Chair, Department of Surgery
Chief, Endocrine Surgery
Director, Endocrine Oncology Program
New York Presbyterian Hospital
Well Cornell Medical Center
New York, USA

Evan N Feldman MD FACS FASCRS
Attending Surgeon
Piedmont Atlanta Hospital
Atlanta, Georgia

Leandro Feo MD FACS
Colorectal Surgeon
Department of Surgery
Colorectal Division
Catholic Medical Center
Manchester, New Hampshire, USA

Alessandro Fichera MD FACS FASCRS
Research Fellow
Professor and Section Chief
Gastrointestinal Surgery
Division of General Surgery
Department of Surgery
University of Washington Medical Center
Seattle, Washington, USA

Brendan M Finnerty MD
Surgical Resident
Department of Surgery
New York Presbyterian Hospital
Well Cornell Medical Center
New York, USA

James Fleschman MD
Helen Buchanan and Stanley Joseph Seeger Professor and Chairman
Department of Surgery
Baylor University Medical Center
Graduate Medical Education
Dallas, Texas, USA

Sander Florman MD FACS
Director
Recanati/Miller Transplantation Institute
Mount Sinai Health System
The Charles Miller, MD
Professor of Surgery
Icahn School of Medicine at Mount Sinai
New York, USA

Todd D Francone MD MPH FACS
Director of Robotic Surgery
Colon and Rectal Surgery
Associate Program Director
Residency in Colon and Rectal Surgery
Assistant Professor of Surgery
Department of Colon and Rectal Surgery
Lahey Hospital and Medical Center
Tufts University School of Medicine
Boston, Massachusetts, USA

Pankaj Kumar Garg MS DNB MCh (Surg Oncol) MNAMS
Assistant Professor
Department of Surgery
University College of Medical Sciences and Guru Teg Bahadur Hospital
University of Delhi
New Delhi, India

Kelly A Garrett MD FACS FASCRS
Assistant Professor
Department of Surgery
Division of Colon and Rectal Surgery
New York Presbyterian Hospital
Well Cornell Medical College
New York, USA

Mahesh Goel MBBS MS
Associate Professor
GI and Hepatopancreatoenterology
Surgical Oncology
GI Disease Management Group
Tata Memorial Hospital
Mumbai, Maharashtra, India

Benjamin Golas MD
Assistant Professor
Department of Surgery
Well Cornell Medicine
New York, USA

Emre Gorgun MD FACS FASCRS
Staff Surgeon
Department of Colorectal Surgery
Digestive Disease Institute
Cleveland Clinic, Ohio, USA

Lester Gottesman MD FASCRS
Associate Professor of Surgery
Icahn School of Medicine at Mount Sinai
New York, USA

Sanjay Govil MS FRCS
Senior Consultant
HPB Surgery and Liver Transplantation
Global Hospital
Chennai, Tamil Nadu, India

Anand Govindarajan MD Msc FRCS CSc
Assistant Professor
Department of Surgery
Mount Sinai Hospital
University of Toronto
Toronto, Ontario, Canada
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery

Baoqing Li MD
Assistant Professor
Clinical Radiation Oncology
Weill Cornell Medical College
New York, USA

Alissa J Ritter Lupu RD CDN CNSC
Clinical GI Dietitian
Center for Advanced Digestive Care
New York Presbyterian Hospital
Weill Cornell Medical Center
New York, USA

Josep Marti-Sanchez MD PhD
Surgical Attending
Centre Médico-Chirurgical de Tronquières,
Aurillac, France

Abhishek Mathur
Assistant in Clinical Surgery
Division of Abdominal Organ Transplantation
New York Presbyterian Hospital
Columbia University Medical Center
New York, USA

Abhishek Mitra MBBS MS
Fellow
GI and Hepatopancreatobiliary Surgical Oncology
Department of Surgical Oncology
Tata Memorial Hospital
Mumbai, Maharashtra, India

Rohin Mittal MS DNB MRCS
Associate Professor
Colorectal Surgery
Department of Surgery (Unit 2)
Christian Medical College
Vellore, Tamil Nadu, India

Oliver J Muensterer MD PhD
Professor of Pediatric Surgery
Department of Pediatric Surgery
University Medicine of the Johannes Gutenberg University Mainz
Mainz, Germany

Govind Nandakumar MD FACS FASCRS
Chief of Gastrointestinal Surgery and Gastrointestinal Oncosurgery
Columbia Asia Hospitals
Bengaluru, Karnataka, India
Courtesy Faculty
Weill Cornell Medical College
New York, USA

Rahul Narang MD
Assistant Professor of Surgery
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York, USA

Garrett M Nash MD MPH FACS
Assistant Attending Surgeon
Colorectal Surgery Service
Memorial Sloan Kettering Cancer Center
New York, USA

John Ng MD
Assistant Professor
Department of Radiation Oncology
Weill Cornell Medical College
New York, USA

Nabeel R Obeid MD
Chief Resident
General Surgery
Academic and QI Chief Resident
Department of Surgery
New York University School of Medicine
New York, USA

Paul RA O’Mahoney MD
Research Fellow
Colon and Rectal Surgery
Weill Cornell Medical College
New York, USA

Melanie Ongchin MD
Assistant Professor of Surgery
General Surgery/Surgical Oncology
Weill Cornell Medicine
New York, USA

Nicole C Panarelli MD
Assistant Professor of Pathology and Laboratory Medicine
Weill Cornell Medical College
New York, USA

Durgatosh Pandey MS DNB MCh (Surg Oncol)
Dr BRA Institute Rotary Cancer Hospital
All India Institute of Medical Sciences
New Delhi, India

Rambha Pandey MD
Assistant Professor
Department of Radiation Oncology
Dr BR Ambedkar Institute
Rotary Cancer Hospital
All India Institute of Medical Sciences
New Delhi, India

Samir Pandya MD
Assistant Professor of Surgery and Pediatrics
Department of Surgery
Division of Pediatric Surgery
New York Medical College
Valhalla, New York, USA

Manish Parikh MD
Associate Professor
Department of Surgery
Chief, Perioperative Services
Bellevue Hospital Center
New York University School of Medicine
New York, USA

Subroto Paul MD
Associate Professor of Cardiothoracic Surgery
Associate Professor of Health Policy and Research in Cardiothoracic Surgery
Department of Cardiothoracic Surgery
New York Presbyterian Hospital
Weill Cornell Medical College
New York, USA

Benjamin Perakath MS FRCS(G)
Professor and Head
Colorectal Surgery
Department of Surgery (Unit 2)
Division of Surgery
Christian Medical College
Vellore, Tamil Nadu, India

Carrie Y Peterson MD
Assistant Professor
Department of Surgery
Division of Colorectal Surgery
Medical College of Wisconsin
Milwaukee, Wisconsin, USA

Michael Polcino MD FACS
Director of Colon and Rectal Surgery
Saint Barnabas Hospital
Bronx, New York, USA
Alfons Pomp MD FACS FRCSC
Leon C. Hirsch Professor
Vice Chairman, Department of Surgery
Chief, GI, Metabolic and Bariatric Surgery
Weill Cornell Medicine
New York Presbyterian Hospital
New York, USA

Vitaliy Y Poylin MD FACS FASCRS
Assistant Professor in Surgery
Harvard Medical School
Beth Israel Deaconess Medical Center
Boston, Massachusetts, USA

Christian P Probst MD MPH
Resident Trainees
Department of Surgery
University of Rochester Medical Center
Rochester, New York, USA

Pejman Radkani MD MPH
Visiting Surgeon
Transplant Surgery
Korea and France

Siva Raja MD PhD
Staff Surgeon
Thoracic and Cardiovascular Surgery
Cleveland Clinic
Cleveland, Ohio, USA

Maria Camilla Ramirez MD
Surgical Resident
Mount Sinai St Luke's and Roosevelt Hospital, New York, USA

Ashwin Rammohan MS MCh
Consultant
HPB and Liver Transplant Surgeon
Institute of Liver Surgery and Transplantation
Global Hospital
Chennai, Tamil Nadu, India

Ankesh Rawat MBBS
Junior Registrar
Medanta—The Medicity
Gurgaon, Haryana, India

Christine J Ren-Fielding MD
Professor, Department of Surgery
Chief, Division of Bariatric Surgery
NYU Langone Medical Center
New York University School of Medicine
New York, USA

R Taylor Ripley MD
Thoracic Surgeon
Thoracic and GI Oncology Branch
Center for Cancer Research
National Cancer Institute
Bethesda, Maryland, USA

Kayvan Roayaie MD PhD
Division of Abdominal Organ Transplantation
Oregon Health Sciences University
Portland, Oregon, USA

Sasan Roayaie MD
Chief, Hepatobiliary Surgery
Liver Cancer Program
North Shore-LIJ Health System
Lenox Hill Hospital
New York, USA

Jessica A Rotman MD
Resident Physician
Department of Radiology
New York Presbyterian Hospital
Weill Cornell Medical Center
New York, USA

Rashmi S MBBS Diplomat in Pathology (India)
MD Pathology (US)
Fellow
Surgical and GI Pathology
Department of Pathology
MD Anderson Cancer Center
University of Texas
Houston, Texas, USA

Bashar Safar MD
Assistant Professor
Colorectal Surgery
Johns Hopkins University School of Medicine
Baltimore, Maryland, USA

Gayle Rudofsky Salama MD
Radiologist in Training
Department of Radiology
New York Presbyterian Hospital
Weill Cornell Medical College
New York, USA

Tushar Samdani MD MS DNB
(Laparoscopic Colorectal and General Surgery)
Laparoscopic Colorectal and General Surgeon
MedStar Saint Mary's Hospital
Leonardtown, Maryland, USA

Nora Sammon BSN RN CWOCN
Wound, Ostomy and Continence Nurse
Department of Nursing
New York Presbyterian Hospital
Weill Cornell Medical Center
New York, USA

Allen Sanchez MD
Radiologist in Training
Department of Radiology
New York Presbyterian Hospital
Weill Cornell Medical College
New York, USA

Inderpal S Sarkaria MD FACS
Vice Chairman, Clinical Affairs
Director, Thoracic Robotic Surgery
Co-Director, Esophageal and Lung Surgery Institute
Department of Cardiothoracic Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania, USA

Felice Schnoll-Sussman MD
Associate Professor of Clinical Medicine
Department of Medicine
Weill Cornell Medical College
Division of Gastroenterology and Hepatology
New York, USA

Beth Schrope MD PhD FACS
Associate Professor of Surgery
Columbia University College of Physicians and Surgeons
New York, USA

Daniele Scoglio MD
Research Fellow
Department of Surgery
University of Washington Medical Center
Seattle, Washington, USA

Elliot Servais MD
Thoracic Surgeon
Department of Thoracic Surgery
Lahey Hospital and Medical Center
Tufts University School of Medicine
Burlington, Massachusetts, USA
Teo Jin Yao MBBS (Sing), MRCS (Edinburgh), FRCS (Edinburgh)
Associate Consultant
Department of Hepatopancreatobiliary and Transplant Surgery
Singapore General Hospital
Singapore

Lee Ser Yee MBBS M Med(Surgery) MSc FAMS FRCS(Ed)
Senior Consultant Surgeon
Department of Hepatopancreatobiliary and Transplant Surgery
Singapore General Hospital
Associate Professor (Adj)
Duke-National University of Singapore Medical School
Singapore

Heather Yeo MD MHS
Assistant Professor of Surgery
Assistant Professor of Healthcare Policy and Research
Department of Surgery
Weill Cornell Medicine
New York, USA

Chan Chung Yip MBBS MMed FRCS MD
Senior Consultant Surgeon
Department of Hepatopancreatobiliary and Transplant Surgery
Singapore General Hospital
Duke-National University of Singapore Medical School
Singapore

James Yoo MD
Chief, Colon and Rectal Surgery
Department of Surgery
Tufts Medical Center
Boston, Massachusetts, USA

Rasa Zarnegar MD
Associate Professor of Surgery
Weill Cornell Medical College
Associate Attending Surgeon
Department of Surgery
New York Presbyterian Hospital
Weill Cornell Medical Center
New York, USA
The field of gastrointestinal surgery is changing dramatically. Laparoscopy and minimally invasive surgery began this “revolution” in the 1990’s. What next? Working within the lumen of the bowel (endoluminal surgery) combined with better, cheaper endoscopes and tools will lead the way. Biomaterials and advanced imaging methods are the other essential elements for revolutionizing digestive disease care. Dr Govind Nandakumar has been my student since 2000 and over the years, he has learned, developed and improved many of the thoughts and concepts I have believed in. This book brings together all the relevant specialties in gastrointestinal surgery. Chapters on innovative approaches will hopefully stimulate new approaches to the care of patients with digestive disorders. Dr Nandakumar used his experience at the Center for Advanced Digestive Care (CADC) at the New York Presbyterian Hospital, New York, USA and is in the process of developing a similar center called the Integrated Digestive Liver and Cancer Centre (IDLCC) at Columbia Asia Hospitals, Bengaluru, Karnataka, India. This book talks about many of the concepts that address integrated care and will be a valuable tool for any gastrointestinal surgeon.

Jeffrey W Milsom MD
Chief, Section of Colon and Rectal Surgery
Jerome J DeCosse Distinguished Professor
Executive Director, Center for Advanced Digestive Care
Weill Cornell Medicine, New York Presbyterian Hospital
New York, USA
The field of gastrointestinal surgery has seen impressive innovations in recent years. Dr Govind Nandakumar, an experienced gastrointestinal surgeon, has edited a very comprehensive book on the topic with contributions from an outstanding group of authors. The book will be valuable to the aspiring gastrointestinal surgeon or a junior consultant as it provides an easy read on several complex gastrointestinal topics. The chapters are comprehensive and yet concise to read efficiently prior to a difficult case. The evidence-based approach and the section on "Landmark Trials" gives the necessary background information and yet encourage the reader to constantly review and update the ever changing literature. The inclusion of nonsurgical topics and techniques helps in guiding and formulating a multidisciplinary care of the patient. The step-by-step procedural review is a nice tool to prepare for an operation quickly. This book is a valuable adjunct to well-established textbooks as it provides a practical, concise and evidence-based approach to the surgical care of the complex gastrointestinal and hepatobiliary patient.

Fabrizio Michelassi MD
Lewis Atterbury Stimson Professor and Chairman
Surgeon-in-Chief
Department of Surgery
Weill Cornell Medicine
New York, USA
I have witnessed the evolution of surgery over the last four decades. Health care is changing rapidly and faster than ever before. Better and more efficient patient care and clinical outcomes are an automatic sequel. Analysis of why this occurred indicates changing trends in communication and advancing technology, which amongst other things, makes it easier for global merger of clinical practice. Also available are newer and efficient surgical tools which drive procedures and practices much more than in the past. Subspecialties such as surgical gastroenterology are creating an identity for themselves. Focused care of disorders of the gastrointestinal tract is more possible today than ever before. All this has created an abundance of knowledge and information that needs to be dissipated. Dispersal of knowledge, now needs to be very different—accurate, focused, concise and yet comprehensive. Dr Govind Nandakumar has chosen a topic and authors list to dissipate knowledge in the field of surgical gastroenterology in an evidence-based, comprehensive and yet concise manner. Global authorship, well-defined chapters that address topics of relevance and importance are delivered with clarity.

Nandakumar Jairam MBBS MS
Chairman and Group Medical Director
Columbia Asia Hospitals
Bengaluru, Karnataka, India
The field of Gastrointestinal Surgery has grown tremendously and is rarely practiced as one field with superspeciality services like Hepatobiliary, Colorectal and Bariatric Surgery blossoming. The goal of this book was to provide a high quality, state-of-the-art, evidence-based book that is efficient to read and could be a quick reference for a busy trainee or a junior surgeon. There are several good textbooks that address the pathophysiology and basic science of surgical gastroenterology, so our book is focused on a practical approach to these diseases. The value of multidisciplinary care of Complex Gastrointestinal (GI) diseases is understated. This book includes chapters on several allied specialties that are required to take care of the complex GI patient.

The book addresses the basics and fundamentals of each disease process while reviewing new and innovative approaches. We have listed key randomized trials for each section to facilitate rapid access to relevant content. Progress in the field of gastrointestinal and liver diseases has created a wealth of knowledge. Imparting and absorbing the knowledge efficiently has become increasingly difficult. We have made an effort to present important and relevant content in a manner that is easy to read.

Dr Subroto Paul has done fantastic job with gathering an elite panel of surgeons to cover the section on esophageal diseases. This section would not have been possible without his help.

Govind Nandakumar MD FACS FASCRS
Chief of Gastrointestinal Surgery and Gastrointestinal Oncosurgery
Columbia Asia Hospitals, Bengaluru, Karnataka, India
Courtesy Faculty, Weill Cornell Medical College
New York, USA
Acknowledgments

I would like to thank all the authors who have spent significant time and effort contributing to this book. A special thanks to Dr Subroto Paul who was instrumental in compiling and editing the Esophageal section. I would also like to thank Mr Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President), Ms Chetna Malhotra Vohra (Associate Director—Content Strategy), Ms Nedup Denka Bhutia (Development Editor) and the entire Jaypee team for their relentless efforts in designing and completing this book.
Section 1: General Chapters

1. Topics in Intraoperative Gastrointestinal Pathology for Practicing Surgeons
 Nicole C Panarelli, Debra Beneck
 • Review 3

2. Hepatic, Biliary, and Pancreatic Imaging
 Allen Sanchez, Gayle Rudofsky Salama, Douglas Brylka
 • Imaging of the Liver 14
 • Lesions of the Liver 19
 • Metastases 30
 • Imaging of the Biliary System 32
 • Imaging of the Pancreas 43

3. Interventional Radiology Techniques
 Jessica A Rotman, Adam D Talenfeld
 Part I: Percutaneous Treatment of Benign Liver Disease 69
 • Portal Hypertension 69
 • Biliary Obstruction 73
 Part II: Percutaneous Treatment of Primary and Metastatic Hepatic Malignancy 77
 • Percutaneous Tumor Ablation 77
 • Transarterial Interventions 81

4. Radiotherapy for Gastrointestinal and Liver Pathology
 John Ng, Baoqing Li, Tony JC Wang, David P Horowitz
 • Evidence-Based Review 103
 • Landmark Trials 107
 • Conclusion and Future Directions 107

5. Novel Techniques in Advanced Endoscopy
 Christine Boumitri, Nikhil Kumta, Prashant Kedia, Michel Kahaleh
 • Interventional Endoscopic Ultrasound 110

6. Pediatric Gastrointestinal and Hepatobiliary Surgery
 Oliver J Muensterer, Samir Pandya
 • General Aspects of Surgery in Children 136
 • Pediatric Foregut Surgery 136
 • Midgut and Hindgut Pediatric Surgery 143
 • Hepatobiliary Surgery in Children 152
 • Conclusion and Future Directions 159
7. Early Recovery after Gastrointestinal Surgery
Benjamin Perakath, Rohin Mittal
- Aim and Rationale of the ERAS Pathway 162
- Components of ERAS 162
- Preoperative Interventions 162
- Perioperative Interventions 164
- Postoperative Interventions 165
- Audit 166
- Outcomes of the ERAS Pathway 166

8. Nutrition for the Gastrointestinal and Hepatobiliary Surgery Patient
Alissa J Ritter Lupu
- Preoperative Nutrition Optimization 169
- Enteral and Parenteral Nutrition Support 173
- Selection of EN Formula 174
- Oral Diet Advancement 175
- Postoperative Medical Nutrition Therapy Guidelines 175
- Medical Nutrition Therapy for Specific Surgeries 178

9. Stoma Care
Kelly Hicks, Nora Sammon, Danielle Hunton
- Preoperative Considerations 182
- Stomal Complications 182
- Peristomal Skin Complications 184
- Other Skin Complications 189
- Psychological Impact 189

10. Genetic Counseling and Genetic Testing for Colorectal Cancer Risk—A Case-based Review
Francesca Tubito, Diana Moglia Tully, Michelle E Ernst
- Genetic Counseling 192
- Introduction to Hereditary Colorectal Cancer Syndromes 197
- Hereditary Colorectal Cancer Syndromes without Significant Polyposis 199
- Adenomatous Polyposis Syndromes 210
- Hamartomatous Polyposis Syndromes 225
- Other Polyposis Syndromes 231
- Other Hereditary Syndromes with GI Findings 232
- Types of Genetic Tests and Technologies 232

Section 2: Esophagus
Section Editor—Subroto Paul

11. Benign Disorders of the Esophagus
Subroto Paul
- Overview 245
12. **Gastroesophageal Reflux Disease**
Stefan S Kachala, Brendan M Finnerty, Rasa Zamegar
- Review of Landmark Studies 246
- Minimally Invasive Gastric Fundoplication 247
- Operative Tips 251

13. **Surgical Options for Achalasia**
Jon Wee, Nestor Villamizar
- Laparoscopic Heller Myotomy 253
- Peroral Endoscopic Myotomy (POEM) 260
- Conclusion and Future Directions 263

14. **Surgical Treatment of Esophageal Diverticula**
Desmond M D’Souza, Siva Raja
- Zenker’s Diverticulum 265
- Diverticulectomy and Myotomy 265
- Thoracic Diverticula 267
- Conclusion and Future Directions 269

15. **Endoscopic Treatment for Achalasia: Peroral Endoscopic Myotomy**
Nikhil Kumta, Christine Boumitri, Michel Kahaleh
- Evidence-Based Review 271
- Procedure 271
- Outcomes 274
- Conclusion and Future Directions 275

16. **Barrett’s Esophagus**
Amir Soumekh, Felice Schnoll-Sussman
- Preoperative Planning 280
- Surgical Anatomy 280
- Step-by-Step Illustration of Procedure 280
- Operative Tips 280
- Complications 280
- Outcomes 280
- Conclusion and Future Directions 281

17. **Malignant Disorders of the Esophagus**
Subroto Paul
- Overview 283

18. **Short- and Long-Term Outcomes in Esophageal Cancer**
Subroto Paul
- Postoperative and Short-Term Outcomes 284
- Long-Term Survival 286

19. **Esophagectomy**
Elliot Servais
- Overview 291
Evidence-Based Practices in Gastrointestinal, Colorectal and Hepatobiliary Surgery

20. Robotic Assisted Minimally Invasive Ivor Lewis Esophagectomy
 R Taylor Ripley, Inderpal S Sarkaria
 • Evidence-Based Review 299
 • Preoperative Planning 299
 • Anesthetic Considerations 300
 • Procedure and Surgical Anatomy 300
 • Postoperative Care 303
 • Illustrations 303
 • Complications 303
 • Outcomes (Literature Review) 303
 • Conclusion and Future Directions 308

Section 3: Stomach

21. Gastric Bypass and Biliopancreatic Diversion
 Adam Levy, Katherine D Gray, Gregory Dakin
 • Evidence-Based Review: Indications 313
 • Evidence-Based Review: Physiology 314
 • Landmark Trials 315
 • Procedures 315
 • Operative Tips 319
 • Complications 319
 • Outcomes in Bariatric Surgery 321

22. Laparoscopic Adjustable Gastric Banding and Sleeve Gastrectomy
 Nabeel R Obeid, Christine J Ren-Fielding, Manish Parikh
 • Evidence-Based Review 325
 • Landmark Trials 326
 • Preoperative Planning 327
 • Surgical Anatomy 327
 • Procedure: Laparoscopic AGB 328
 • Procedure: Laparoscopic SG 334
 • Conclusion and Future Directions 340

23. Role of Surgery in Developing Economies
 HV Shivaram, Natarajan A
 • Synergism of Growing Economies and Illnesses 342
 • Evidence-Based Review 343
24. Metabolic Surgery
 Alpana P Shukla, Alfons Pomp
 • Mechanisms of Glycemic Control after Metabolic Surgery 378
 • Outcomes of Metabolic Surgery 379
 • Patient Selection and Surgical Options for the Obese Patient with T2DM 380

25. Gastric Cancer
 Savio George Barreto, Ankesh Rawat, Parul J Shukla
 • Etiology 384
 • Classification of Gastric Cancer 384
 • Signs and Symptoms of Gastric Cancer 384
 • Diagnosis and Staging of Gastric Carcinoma 386
 • Treatment of Gastric Cancer 387

Section 4: Liver

26. Anatomic Resections of the Liver
 Neel P Chudgar, Govind Nandakumar
 • Anatomy 399
 • Preoperative Planning 404
 • Procedures 405
 • Postoperative Care 412
 • Operative Tips 413
 • Outcomes 414
 • Conclusion and Future Directions 414

27. Benign Tumors of the Liver
 Ashwin Rammohan, Sanjay Govil
 • Introduction and Classification 416
 • Incidental Liver Tumors 416
 • Cavernous Hemangioma 418
 • Focal Nodular Hyperplasia 420
 • Hepatocellular Adenoma 421
 • Benign Cystic Tumors 423
 • Hepatobiliary Cystadenoma with OS 424
 • Hepatobiliary Cystadenoma without OS 425
 • Intraductal Papillary Mucinous Neoplasm of the Bile Duct 426

28. Hepatocellular Carcinoma
 Teo Jin Yao, Lee Ser Yee, Chan Chung Yip, Chung Yaw-Fui Alexander
 • Risk Factors 429
29. Intrahepatic and Perihilar Cholangiocarcinoma: Surgical Management

Kayvan Roayaie, Sasan Roayaie

- Epidemiology 459
- Risk Factors 460
- Intrahepatic Cholangiocarcinoma 460
- Perihilar Cholangiocarcinoma 463
- Liver Transplantation for PCCA 466

30. Colorectal Liver Metastasis

Ramraj Vemala Nagendra Gupta, Govind Nandakumar

- Surgical Anatomy 469
- Diagnosis 469
- Management 471
- Landmark Trials 473
- Operative Tips 474
- Outcome and Surveillance 475
- Future 475

31. Gallbladder Cancer

Pankaj Kumar Garg, Rambha Pandey, Durgatosh Pandey

- Evidence-Based Review of Different Aspects of Surgical Management of GBC 480
- Radical Cholecystectomy 482
- Conclusion and Future Directions 486

32. Ex Vivo Resection of Complex Abdominal Masses

Abhishek Mathur, Tomoaki Kato

- Ex Vivo Surgery in Liver Pathology 489
- Ex Vivo in Cholangiocarcinomas and Klatskin Tumors 489
- Ex Vivo in HCC 491
- Ex Vivo and Colorectal Metastases 492
- Ex Vivo for Benign Liver Lesions or Lesions with Low Malignant Potential 492
- Ex Vivo and Pancreatic Adenocarcinoma 496
• Ex Vivo for Pancreatic Lesions with Low Malignant Potential 497
• Ex Vivo for Lesions at the Root of the Mesentery 500

33. **Operative Techniques for Liver Transplantation** 506
 Pejman Radkani, Vikram Wadhera, Sander Florman
 • History 506
 • Preoperative Planning 506
 • Operative Techniques 507

34. **Perioperative Management of Liver Transplantation** 513
 Parissa Tabrizian, Josep Marti-Sanchez, Antonios Arvelakis, Sander Florman
 • Pathophysiology and Preoperative Evaluation 513
 • Intraoperative Monitoring 514
 • Surgical Techniques 516
 • Challenges Associated with Transplantation 516
 • Postoperative Care after Liver Transplantation 517
 • Complications 518

35. **Indications and Contraindications for Liver Transplantation** 522
 Parissa Tabrizian, Sander Florman
 • Allocation Systems 522
 • Preoperative Evaluation 523
 • Indications 523
 • Contraindications 527
 • Living Donor Liver Transplantation 528

Section 5: Pancreas

36. **Management of Acute and Chronic Pancreatitis: Focus on Surgical Management** 533
 Beth Schrope
 • Acute Pancreatitis 533
 • Chronic Pancreatitis 543
 • Conclusion and Future Directions 563

37. **Pancreatic Cancer** 566
 Jumana Jaloudi, Michael D Kluger
 • Diagnostic Approach 568
 • Surgical Management 570
 • Other Procedures 581
 • Outcomes and Considerations 585
 • Landmark Trials 585

38. **Borderline Resectable Pancreatic Cancer** 589
 Abhishek Mitra, Bhawna Sirohi, Mahesh Goel, Shallesh V Shrikhande
 • Evidence-Based Review 589
 • Landmark Trials 593
 • Preoperative Planning 594
39. Endocrine Tumors of the Pancreas
 Kareem Ibrahim, Hasan Aldailami, Thomas J Fahey III
 • Anatomy and Physiology of the Pancreas 603
 • Diagnosis 605
 • Insulinoma 606
 • Gastrinoma 609
 • Glucagonoma 612
 • Somatostatinoma 613
 • Incidentaloma 613
 • Operative Strategies 614

40. Pancreas Transplantation
 Samuel Sultan, Anthony Watkins
 • Evidence-Based Review 619
 • Landmark Trials 621
 • Donor Procurement 622
 • Pancreas Transplantation 624
 • Operative Tips 628
 • Complications 631
 • Outcomes 632
 • Conclusion and Future Directions 632

Section 6: Small Bowel and Abdomen

41. Crohn’s Disease of the Small Bowel
 Daniele Scoglio, Alessandro Fichera
 • Preoperative Planning 637
 • Surgical Procedure 638
 • Operative Technique: Gastrojejunostomy 638
 • Operative Technique: Strictureplasty 640
 • Operative Technique: Laparoscopic Ileocolic Resection 644

42. Gastrointestinal Stomal Tumors
 John Creasy, Benjamin Golas, Melanie Ongchin
 • Pathology 652
 • Prognostic Features and Risk Stratification 654
 • Clinical Presentation 654
43. Carcinoid Tumors of the Gastrointestinal Tract
 Tushar Samdani, Vanessa Hui, Rashmi S, Govind Nandakumar
 - Clinical Presentations and Symptoms 667
 - Pathological Diagnosis and Reporting of NET 669
 - Management of Locoregional Unresectable or Metastatic Carcinoid Tumors 671
 - Landmark Trials 672
 - Outcomes 674
 - Conclusion and Future Directions 675

44. Trauma of the Gastrointestinal Tract
 Soumitra R Eachempati, Philip S Barie
 - Initial Diagnosis of Abdominal Injuries 678
 - Management of Hollow Viscus Injuries 678
 - Injuries to the Stomach 679
 - Duodenal Injuries 680
 - Small and Large Bowel Injuries 680
 - Rectal Injuries 681
 - Injuries to the Spleen 682
 - Liver Injuries 684
 - Injuries to the Pancreas 687

Section 7: Colon

45. Volvulus
 Evan N Feldman
 - Sigmoid Volvulus 693
 - Cecal Volvulus 695
 - Ileosigmoid Knotting 695
 - Volvulus of the Transverse Colon or Splenic Flexure 695
 - Colonic Volvulus in Pregnant Women 696

46. Diverticulitis
 Gregory Charak, Chukwuma Apakama, Steven Lee-Kong
 - Evidence-Based Review 697
 - Trials 699
 - Rationale for Minimally Invasive Approach 699
 - Conclusion and Future Directions 704

47. Surgical Management of Constipation
 Christopher T Aquina, Christian P Probst, Kristin N Kelly, Christina Cellini
 - Prevalence 705
- Etiology and Risk Factors 705
- Classification 705
- Diagnosis and Workup of Constipation 705
- History and Physical Exam 706
- Overview of Diagnostic Schema 708
- Disordered Defecation Studies 708
- Colonic Transit Studies 709
- Lifestyle Modification 710
- Medication Therapy 710
- Biofeedback 712
- Surgical Options for Slow Transit Constipation 712
- Surgical Options for Defecatory Disorders 715

48. Surgical Management of Ulcerative Colitis 719
 Vitaliy Y Poylin, Thomas Cataldo
 - Preoperative Planning 722

49. Surgical Management of Crohn’s Colitis 732
 Mukta K Krane
 - Clinical Presentation 732
 - Indications for Surgery 732
 - Failure of Medical Management 733
 - Procedures 733

50. Hereditary Nonpolyposis Colorectal Cancer Syndromes 739
 Joongho Shin
 - Hereditary Nonpolyposis Colorectal Cancer Syndromes (Lynch Syndrome, LC) 739
 - Hamartomatous Tumor Syndrome 739
 - Conclusion and Future Directions 743

51. Inherited Polyposis Syndromes 745
 Maria Ximena Traa Kleiy, Lilian Chen, James Yoo
 - Investigation of Polyposis Syndromes 748
 - Management 748
 - Prevention 756
 - Conclusion and Future Directions 756

52. Difficult Polypectomy 760
 Emin Aytaç, Emre Gorgun
 - Endoscopic Mucosal Resection 761
 - Endoscopic Submucosal Dissection 762
 - Combined Endoscopic and Laparoscopic Surgery 769

53. Laparoscopy for Colon Cancer 773
 Jared Wong, James Fleshman
 - Colon Cancer 773
<table>
<thead>
<tr>
<th>Section 8: Rectum</th>
</tr>
</thead>
<tbody>
<tr>
<td>55. Rectal Prolapse</td>
</tr>
<tr>
<td>Azah A Althumairi, Bashar Safar</td>
</tr>
<tr>
<td>• Clinical Presentation and Patient Evaluation 803</td>
</tr>
<tr>
<td>• Evidence-Based Review and Landmark Trials 803</td>
</tr>
<tr>
<td>• Surgical Procedures 805</td>
</tr>
<tr>
<td>• Outcomes 808</td>
</tr>
<tr>
<td>• Conclusion and Future Directions 809</td>
</tr>
<tr>
<td>56. Transanal Endoscopic Microsurgery</td>
</tr>
<tr>
<td>Joshua A Tyler, Steven R Hunt</td>
</tr>
<tr>
<td>• Clinical Anatomy 811</td>
</tr>
<tr>
<td>• Preoperative Evaluation 811</td>
</tr>
<tr>
<td>• Operative Steps 812</td>
</tr>
<tr>
<td>• Postoperative Care 815</td>
</tr>
<tr>
<td>• Clinical Tips and Pitfalls 815</td>
</tr>
<tr>
<td>57. Rectal Cancer</td>
</tr>
<tr>
<td>Usmaan Hameed, Anand Govindarajan</td>
</tr>
<tr>
<td>• Evidence-Based Review and Landmark Trials 816</td>
</tr>
<tr>
<td>• Procedures 819</td>
</tr>
<tr>
<td>• Complications 821</td>
</tr>
<tr>
<td>• Conclusion and Future Directions 821</td>
</tr>
<tr>
<td>58. Management of Recurrent Rectal Cancer</td>
</tr>
<tr>
<td>Paul RA O'Mahoney, Govind Nandakumar, Heather Yeo</td>
</tr>
<tr>
<td>• Risk Factors for Recurrence 823</td>
</tr>
<tr>
<td>• Classification of Local Recurrence 823</td>
</tr>
<tr>
<td>• Presentation and Incidence 825</td>
</tr>
<tr>
<td>• Patient Selection 826</td>
</tr>
<tr>
<td>• Preoperative Planning 826</td>
</tr>
<tr>
<td>• Anatomic Considerations and Consultants 826</td>
</tr>
<tr>
<td>• Imaging 826</td>
</tr>
<tr>
<td>• Operative Technique 827</td>
</tr>
<tr>
<td>• Intraoperative Radiation Therapy 828</td>
</tr>
</tbody>
</table>
59. **Laparoscopic Proctectomy**
Alexis L Grucela, John-Paul Bellistri, Aida Taye
- Evidence-Based Review 833
- Preoperative Preparation and Prevention 834
- Surgical Anatomy 837
- Step-by-Step: Laparoscopic Low Anterior Resection 839
- Operative Tips 846
- Outcomes and Complications 847
- Future Directions 850
- Landmark Trials and Key Studies 850

60. **Robotic Proctectomy**
Carrie Y Peterson, Govind Nandakumar
- Indications 855

61. **Acute and Chronic Pouch Complication**
Lilian Chen, Joseph Batac, Todd D Francone
- Acute Complications 867
- Chronic Complications of IPAA 872
- Pouch Dysfunction 876

62. **Retrorectal Tumors**
Rebecca A Levine, Rahul Narang
- Evidence-Based Review 887
- Procedure 893
- Complications 896
- Outcomes 896
- Future Directions 897

Section 9: Anus

63. **Hemorrhoids**
Ziad N Kronfol, Melissa M Alvarez-Downing
- Surgical Anatomy 903
- Preoperative Planning 905
- Closed Hemorrhoidectomy (Ferguson) 905
- Open Hemorrhoidectomy (Milligan-Morgan) 907
- Stapled Hemorrhoidopexy (Procedure for Prolapse and Hemorrhoids, PPH) 908
• Ligasure Emorrhoidectomy 910
• Transanal Hemorrhoidal Devascularization or Hemorrhoidal Artery Ligation 911

64. Surgical Therapy for Fecal Incontinence 915
 Kelly A Garrett
 • Etiology 915
 • Assessment 917
 • Physiologic Testing 917
 • Treatment 919

65. Perianal Crohn’s Disease 929
 Emily Steinhagen, Randolph M Steinhagen
 • Evaluation 929
 • Treatment 929
 • Skin Tags 930
 • Anal Fissure and Ulceration 930
 • Stricture 931
 • Abscess and Fistula 931
 • Carcinoma 934

66. Anorectal Sexually Transmitted Diseases 937
 Maria Camilla Ramirez, Lester Gottesman
 • Bacterial STD 937

67. Anal Cancer and Anal Intraepithelial Neoplasia 943
 Jason R Bingham, Amit K Agarwal, Scott R Steele
 • Evidence-Based Review 945
 • Landmark Trials 951
 • Preoperative Planning 952
 • Surgical Anatomy 952
 • Abdominoperineal Resection 954
 • Technique for AIN 963
 • Conclusion and Future Directions 965

Index 971
Video 12.1. Robotic Nissen Fundoplication
Video 21.1. Gastric Bypass and Biliopancreatic Diversion
Video 22.1. Laparoscopic Sleeve Gastrectomy and Hiatal Hernia Repair
Video 23.1. Mini Gastric Bypass
Video 30.1. Laparoscopic Segment IVB Colorectal Liver Metastatectomy
Video 46.1. Sigmoid Colectomy
Video 52.1. Submucosal Saline Injection
Video 52.2. Marking of the Lesion
Video 52.3. Repair of a Mucosal Defect Developed during ESD with Endoclips in a Patient with Large Cecal Polyp
Video 59.1 Laparoscopic Proctectomy
Video 60.1 Robotic Proctectomy
Video 67.1 Laparoscopic Abdominal-perineal Resection
Additional Videos
Available on emedicine360.com

- Transanal Minimally Invasive Surgery
- Laparoscopic Left Hemicolecotomy
- Laparoscopic Total Proctocolectomy with J-Pouch
- J-Pouch Creation
Pancreas Transplantation
Samuel Sultan, Anthony Watkins

BACKGROUND

Type 1 diabetes mellitus affects ~30 million people worldwide and the incidence has been increasing recently, by about 3% per year.\(^1\) Prior to the discovery of insulin, the average life expectancy was only 2 years after being diagnosed with diabetes. The advent of purified insulin improved the prognosis significantly; however, it consequently led to the recognition of a number of long-term sequelae of hyperglycemia including neuropathy, retinopathy, and nephropathy. In 1966, Kelly and Lillehei described the first simultaneous pancreas-kidney transplants (SPK), performed at the University of Minnesota for a uremic diabetic patient.\(^2\) The goal was to simultaneously restore functioning \(\beta\) cells allowing adequate insulin production, thus preventing recurrent diabetic nephropathy in the renal allograft. Although initial results were dismal, outcomes significantly improved with the advent of improved immunosuppression and modifications in surgical technique.

The Diabetes Control and Complications Trial established that tight glycemic control is imperative to avoid the development of secondary complications.\(^3\) Unfortunately, these complications are not reversed by intense insulin therapy and there are risks of iatrogenic hypoglycemia. Currently, no form of exogenous insulin administration is able to achieve the euglycemic, insulin-independent state that is possible with pancreas transplantation (PTx). The American Diabetes Association (ADA) recommends that SPK transplantation should be considered for type 1 diabetes who require kidney transplantation (KTx), and pancreas transplantation alone (PTA) for patients with brittle diabetes or episodes of hypoglycemic unawareness. Recent studies have also documented a benefit of PTx in a select group of patients with type 2 diabetes.\(^4\)

Almost a half-century later, SPK transplantation remains the definitive and optimal treatment for patients with both type 1 diabetes mellitus and end-stage renal disease (ESRD). During this time, there have been numerous developments and modifications to PTx, and several innovations still remain on the horizon.

EVIDENCE-BASED REVIEW

The immediate goal and benefit of PTx are to achieve a euglycemic state without the need for exogenous insulin. In addition, PTx adds the potential to not only halt the progression of some secondary diabetes-associated complications, but also lead to resolution of some of these processes.\(^5\) Lastly, several studies have demonstrated a survival benefit associated with SPK in comparison to uremic patients who remain on hemodialysis and recipients of KTx alone.\(^6\)\(^,\)\(^8\)

While the kidney remains the most commonly transplanted organ, the number of PTx has been limited for several reasons. First, as is the case with organ transplantation in general, a significant discrepancy exists between organ supply and demand. In addition to the limited supply, pancreas allograft acceptance is more highly selective than other organs. In this case, the possibility of underutilization has been examined. Finally, optimal selection of recipients is equally important to ensure successful outcomes, particularly since the surgery is more extensive.

While deceased donation experienced a significant increase from 2002 to 2007, coinciding with the inception of the Organ Donation Breakthrough Collaborative sponsored by Health Resources and Services Administration, PTx rates decreased during the same time period.\(^9\)\(^,\)\(^11\) Several groups have attempted to define the challenges with pancreata utilization. Based on the data from the United Network for Organ Sharing, Stratta and Bennett noted that only 60% of the pancreas grafts recovered were transplanted. The reasons cited for discard were often labeled as unknown, indicating the need for improved data tracking.\(^12\) Wiseman et al. examined Organ Procurement and Transplantation Network data from 2005 to 2007 and
identified a subgroup of 1,763 potential pancreas donors (PPDs) defined by age (19–40 years), body mass index (BMI; <30 kg/m²), successful liver donation, and negative viral serology testing, which were not used. They discovered that 85% of the 1,763 donors declined for pancreas procurement were reported as relating to donor age/quality. They were neither able to define specific medical or social or behavioral characteristics of PPD that precluded successful donation nor able to identify a correlation with donor service area (DSA), making it difficult to clearly ascertain the reason for such high discard rates.

Geographic variability in utilization of potential transplantable pancreata led to the development of the pancreas donor risk index (PDRI). This tool was established to assess the differential impact of organ quality on PTx outcomes, specifically as a function of the type of transplant [SPK, pancreas after kidney transplants (PAK), and PTA] and recipient severity of illness to help guide the clinician to optimize pancreas utilization. Retrospective analysis of all PTx from the Scientific Registry of Transplant Recipients from 2000 to 2006 was performed using a Cox regression analysis controlling for the donor and recipient characteristics. Ten donor variables including age, BMI, race, and serum creatinine, and one transplant factor (cold ischemia time) were used to develop the PDRI. The median risk donor was defined as a 28-year-old non-black, non-Asian man, with a BMI of 24 kg/m², a height of 173 cm, non-cerebrovascular accident (CVA) as the cause of death, pancreas preservation time of 12 hours, non-donation after cardiac death (DCD) and serum creatinine <2.5 mg/dL. Increasing PDRI was associated with a significant, graded reduction in 1-year pancreas graft survival. Importantly, recipients of PTAs or PAKs whose organs came from donors with an elevated PDRI (1.57–2.11) experienced a lower rate of 1 year graft survival (77%) compared with SPK recipients (88%). Further investigations have supported these findings with negative prognostic donor factors including donor BMI ≥30 [hazard ratio (HR) 1.87, p=0.005], donor Cr ≥2.5 (HR 3.16, p=0.007), donor age >50 (HR 1.73, p=0.082), and preservation time >20 hours (HR 2.17, p<0.001).

In addition to the importance of a carefully selected donor, a comprehensive pretransplant recipient workup is essential. A multidisciplinary approach that consists of a thorough medical, surgical, and psychosocial evaluation common to the evaluation of a potential KTx recipient is necessary. A major focus of the recipient evaluation is the cardiac assessment because cardiovascular disease is responsible for the largest fraction of recipient deaths and the majority of waitlist deaths. While there is no absolute age cutoff for PTx, many institutions have placed age limitations on potential pancreas transplant recipients due to some data suggesting that age is a risk factor for inferior outcomes. For example, in one study, recipients ≥50 years of age had higher incidence of graft thrombosis and bleeding requiring re-exploration, as well as a higher incidence of pulmonary infections. Other studies have also shown a lower patient survival for older patients (≥45 years) undergoing PTx. However, it is important to point out that there are data showing good outcomes in carefully selected older patients. Afaneh et al. found comparable outcomes between patients of ≥50 years of age versus younger patients in relationship to surgical morbidity, incidence of infections, and acute rejection (AR) rates. A group from Indiana University similarly found that recipient age had no statistically significant effect on PTx outcomes, in which 18 of the 405 patients were >60 years of age, suggesting that older patients should not necessarily be excluded from PTx solely on the basis of age, as long as they are otherwise carefully screened.

Additional factors that affect outcomes include the type of pancreas transplant performed and technical aspects of the procedure. SPK transplantation has been shown to have superior outcomes in comparison to PAK and PTA. The most recent report from the International Pancreas Transplant Registry (IPTR), a database that has been collecting allograft and patient survival outcomes since 1980, demonstrated 1-year allograft survival rates of 86% and 93% for the pancreas and kidney, respectively, after SPK. Following PAK and PTA, 1 year allograft survival reached 80% and 78%, respectively. These differences in outcomes are partly related to the benefit of earlier recognition of rejection in the SPK due to the concordant nature of rejection in 60–70% of cases. Since renal function abnormalities (i.e. creatinine rise) are detectable earlier than pancreas dysfunction (amylase, lipase, or hyperglycemia), rejection is often detected and treated more promptly in these cases. Early outcomes were marred with graft loss due to technical complications. In all three categories, early technical graft loss rates have decreased significantly over time, now affecting ~8–9% of patients; however, they remain a challenge. The 1-year and 5-year PTx allograft survivals when performed SPK are 86.4% and 72%, respectively. In addition,
the 1-year KTx allograft survival is 93% in the SPK group. The 1-year and 5-year allograft survivals for PTAs were lower at 75.4% and 48.3%, respectively. The 1-year and 5-year allograft outcomes for the PAK allografts are modestly superior to the PTA group with survivals approaching 80% and 58%, respectively.

The options for venous drainage include portal via the superior mesenteric vein (SMV) or systemic via the iliac or inferior vena cava (IVC). Portal venous drainage has the potential advantage of replicating the natural physiology by allowing first-pass degradation of insulin in the liver. Systemic drainage leads to hyperinsulinemia, which is thought to be an independent risk factor for increased ischemic cardiovascular disease, although in clinical practice no cardiovascular adverse effects have been demonstrated. Most importantly, studies have demonstrated similar outcomes with both types of venous drainage.\(^23,24\)

In recent series, the prevailing mode is systemic drainage.

Drainage of exocrine secretions can be performed by either bladder or enteric anastomoses. Bladder drainage provides the advantage of having the ability to monitor the rejection by measuring urinary amylase, less severe complications, and the ability to perform a cystoscopic biopsy. The disadvantages of bladder drainage include electrolyte abnormalities, chronic acidosis, dehydration, and urinary tract infections. Urologic complications such as hematuria, cystitis, urethritis, and bladder stones may also occur. The solution for poorly tolerated complications of bladder drainage is re-exploration with conversion to enteric drainage.\(^25,26\)

Enteric drainage can be accomplished by anastomosing the allograft duodenum to the recipient intestine. This is commonly performed with a hand-sewn anastomosis, although techniques for stapled anastomosis using an end-to-end anastomotic (EEA) stapler device are also described.\(^27\) The main advantage of the enteric drainage technique is that it is more physiologic and avoids the metabolic and urologic complications associated with bladder drainage. The disadvantages include a loss of the ability to monitor the exocrine pancreatic secretions and higher, more severe complication rate. Recent IPTR data show that >80% of transplants are done with enteric drainage.

As opposed to whole PTx, an alternative and developing option is islet cell transplantation. First performed in 1977 at the University of Minnesota, islet transplants emerged in the setting of the early discouraging results for whole PTx.\(^29\) Islet cell transplantation involves the extraction of islets of Langerhans from multiple pancreata through the use of a complex purification process. These cells are then typically injected into the portal vein where they engraft in the parenchyma of the liver and secrete insulin. The Edmonton protocol established the safety and effectiveness of islet transplantation, given a sufficient number of islets.\(^30\) Refinement of isolation and digestion of the pancreas to obtain islets has allowed ∼3,000 islets/kg of recipient weight, a key element in the Edmonton protocol. The major challenges with islet transplants include obtaining optimal engraftment and poor long-term results in relationship to insulin independence. As further improvements in islet cell transplantation are attained, this approach could supplant PTx as a more attractive option due to its less invasive nature.

LANDMARK TRIALS

Pancreas transplantation began with poor graft and patient survival rates; therefore, very few procedures were initially performed. The major improvements in outcomes were derived from better immunosuppression and refinements in surgical technique. As such, these landmark trials provided insight into these new discoveries and innovations that led to successful PTx and widespread recognition of its benefits.

- Sutherland DER, Gruessner RW, Dunn DL, et al. Lessons

DONOR PROCUREMENT

Preoperative Planning

Careful evaluation and recovery of the pancreas is critical to the success of the subsequent transplant regardless of the approach. While the use of living donors has been described, our focus will be limited to the deceased donor. Although donor selection criteria may vary among surgeons and transplant centers, the primary criteria, as mentioned before, include age, BMI, cause of death, and, most importantly, the gross appearance of the organ (evidence of inflammation, fibrosis or fatty infiltration) at the time of recovery. Again, factors such as older age (>40–50), obesity and stroke as the cause of death have been shown to negatively affect graft survival.

Surgical Anatomy

The pancreas serves as both an endocrine and an exocrine gland, and lies in the retroperitoneum at the level of the second lumbar vertebrae. The exocrine function includes the secretion of digestive enzymes, water, electrolytes, and bicarbonate, which are delivered to the duodenum via the pancreatic duct of Wirsung. The endocrine function is comprised of the secretion of insulin, glucagon, and somatostatin by the islets of Langerhans, A cells and D cells, respectively. The pancreas is divided into five parts including the head, uncinate process, neck, body, and tail. The head of the pancreas lies to the right of the superior mesenteric artery (SMA). The uncinate process is a variable posterolateral extension of the head that passes behind the retropancreatic vessels and lies anterior to the IVC and aorta. The neck is defined as the portion of the gland overlying the superior mesenteric vessels. The body and tail lie to the left of the mesenteric vessels; there is no meaningful anatomic division between the body and tail. The arterial supply to the duodenum and pancreas is derived from the celiac axis and the SMA. The head of the pancreas receives blood supply from the gastroduodenal artery (anterior and posterior superior pancreaticoduodenal arteries) and SMA (providing the anterior/posterior inferior pancreaticoduodenal arteries). The splenic artery supplies the neck, body and tail of the pancreas. The venous drainage follows the arteries to provide tributaries to the splenic vein and SMV, which drain into the portal vein.
Step-by-Step Illustration of Procedure

1. Dissection begins with mobilizing the spleen so that it can be used as a handle allowing a “no touch” approach to the pancreas dissection (Fig. 1).
2. The duodenum is kept long by dividing distal to the pylorus and distal to the ligament of Treitz with a gastrointestinal (GI) stapler (Fig. 2).
3. The portal vein is divided about halfway between the pancreas and the liver, leaving at least 1.5 cm of portal vein length above the superior pancreatic border (Fig. 3).
4. The common bile duct and gastroduodenal and splenic arteries are ligated and divided (Fig. 4).
5. The SMA is divided at the aorta (Fig. 5).
6. The root of the small bowel mesentery is stapled (Fig. 6).
7. Remove a segment of the donor common; internal and external iliac arteries are removed for Y graft creation.

Operative Tips

It is important to coordinate the pancreas procurement with other surgical teams when present. While pancreas
Pancreas dissection can be performed either prior to or after cross-clamp, we prefer to perform this dissection in the warm (prior to crossclamp) to assist with better hemostasis upon reperfusion in the recipient operation. Although isolated procurement of the pancreas is described above, an alternative option includes the en-bloc recovery technique that involves removal of the pancreas with the liver followed by separation on the backtable. At some point prior to crossclamp it is important to advance a nasogastric tube into the duodenum to instill 500 mL of amphotericin solution (50 mg/L) into the second portion of the duodenum. This helps decontaminate this portion of the GI tract and combat future infectious issues.

Avoid dissection of splenic artery into the pancreas parenchyma where the dorsal pancreatic artery can be injured. While either University of Wisconsin or histidine-tryptophan-ketoglutarate (HTK) solutions can be used, there are several reports of higher rates of AR, graft pancreatitis and worse graft survival with HTK. Some surgeons limit pancreatic flush to 1–2 L by occluding the SMA with a vessel loop.

Pancreas Transplantation

Preoperative Planning

The selection of a candidate for transplant is a complex process that ensures that a detailed medical and surgical history is obtained, including a focused review of diabetes history. Typically, type 1 diabetes begins before the age of 30, causes ketoacidosis, frequently requires insulin administration, and is not associated with excessive weight. However, patients do not always present as the prototypes of either type 1 or type 2, and such a distinction may be an oversimplification. Nonetheless, patients who have had multiple episodes of diabetic ketoacidosis or hypoglycemic unawareness are typically considered to be absolute indications for PTx. In order to identify other patients who would benefit from PTx, a careful risk–benefit analysis should be performed, accounting for the type of pancreas transplant, depending on the renal function, and the patient’s overall risk profile. The recommended indications for transplant according to the ADA are shown in Table 1. Conversely, there are a number of important contraindications, both absolute and relative. The main absolute contraindications relate to a significant cardiac impairment—namely, significant and untreatable coronary artery disease, a recent myocardial infarction, or an ejection fraction <30%—or an active infection. Other contraindications include a history of untreated or recent malignancy, human immunodeficiency virus, hepatitis B (surface-antigen positive), substance abuse, major psychiatric illness, noncompliance, a life-limiting systemic illness, or significant hepatic or pulmonary dysfunction. Specific surgical aspects of the preoperative evaluation should include a detailed history of prior abdominal surgery, and focus on issues that would increase the risk of complications, including obesity and peripheral vascular disease (PVD).
Diagnostic testing for a preoperative evaluation should include standard testing for major abdominal surgery, as well as testing relevant to transplantation, including viral serologic panels and tissue typing, and finally laboratories pertinent to both the pancreatic function—a C-peptide and hemoglobin A1c level—and renal function, possibly including a kidney biopsy, and a 24-hour urine collection for protein and creatinine clearance. Standard screening for cancer should be performed, for breast, cervical, colorectal, and prostate cancer, as applicable, given the increased risk of cancer post-transplantation. For patients with a history of cancer, a variable waiting time is required depending on the type of cancer. Radiologic evaluation should include either an abdominal ultrasound, or more typically a computed tomography (CT) scan; such testing should look for any abnormal masses, gallstone disease, any kidney pathology, and/or significant vascular disease. Given the high prevalence of cardiovascular disease in this population, typical evaluation includes a stress test, whether exercise or pharmacologic, and an electrocardiogram and echocardiogram. Other general measures include smoking cessation, blood pressure control, correction of hyperlipidemia, increased exercise tolerance, and weight reduction. Ultimately, a thorough preoperative evaluation is best performed via a multidisciplinary collaboration, synthesizing input from surgery, medicine, and psychosocial.

Surgical Anatomy

Regardless of the type of PTx performed, the approach is similar where the colon is mobilized or is to expose the retroperitoneal vessels including the IVC and iliac vessels.

Step-by-Step Illustration of Procedure

There are four key components to the recipient operation: (1) bench preparation, (2) incision and exposure, (3) revascularization, and (4) duct management.

Bench Preparation

1. The initial step involves a thorough inspection of the gland’s color, consistency, and fat content, looking for any injuries to the parenchyma or to the duodenum, and ensuring that the vasculature is adequate for reconstruction (Fig. 7).
2. The splenectomy is typically performed first utilizing either stapler device or individually ligating vessels with silk ties ligation (Fig. 8).
3. Excess fat and surrounding tissues are removed from the body and tail of the pancreas (Fig. 9).
4. The portal vein and splenic and superior mesenteric arteries are then dissected free by removing excessive tissue (Fig. 10).
5. Excessive duodenum is then removed with a gastrointestinal anastomosis stapler and the staple line is oversewn (Fig. 11).

Table 1: Indications for pancreas transplantation.

<table>
<thead>
<tr>
<th>Type of transplant</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Simultaneous kidney and pancreas transplant | CKD stages 4 or 5 (creatinine clearance <30 mL/min) with type 1 diabetes and with other diabetic complications
• Prior renal transplant which is failing in a type 1 diabetic |
| Pancreas after kidney transplant | Prior functioning kidney transplant in type 1 diabetic with other diabetic complications |
| Pancreas transplant alone | Hyperlabile diabetes defined by frequent acute severe metabolic complications (hypoglycemia, marked hyperglycemia, and ketoacidosis) requiring medical attention
• Clinical and emotional problems with insulin therapy that are incapacitating
• Consistent failure of insulin-based management to prevent complications
• Presence of (two or more) diabetic complications that are progressive and unresponsive to intensive insulin therapy
• Early diabetic nephropathy
• Proliferative retinopathy
• Symptomatic peripheral or autonomic neuropathy
• Vasculopathy with accelerated atherosclerosis |
6. The root of the small bowel mesentery should be reinforced for hemostasis with a running 4-0 polypropylene suture (Fig. 12).
7. The arterial reconstruction begins by preparing the donor iliac artery by removing excessive tissue (Fig. 13).
8. The Y graft is then used to create an end-to-end anastomosis between the hypogastric and the splenic artery and between the external iliac and SMA using 6-0 Prolene (Fig. 14).

Incision and Exposure

1. There are two main options for the choice of incision: a lower quadrant extraperitoneal incision or a midline intraperitoneal approach (Figs. 15 and 16).
2. Upon opening the peritoneal cavity, a Bookwalter self-retaining retractor or similar retractor should be used (Fig. 17).
3. The right colon is mobilized to expose the retroperitoneal vessels (Fig. 18).
Revascularization

1. For systemic drainage, the right common iliac artery and IVC and/or right common iliac veins should be dissected free (Fig. 19).
2. Portal venous drainage is performed via an end-to-side anastomosis from the allograft portal vein to the recipient SMV (Fig. 20).

Duct Management

Bladder drainage

1. The bladder anastomosis is performed between the antimesenteric border of the duodenum and the dome of the bladder in a two-layered hand-sewn fashion (Fig. 21).
Alternatively, an EEA stapler can be used to perform this anastomosis (Fig. 22).

Enteric drainage

2. Alternatively, an EEA stapler can be used to perform this anastomosis (Fig. 22).

OPERATIVE TIPS

The backbench preparation of the pancreas requires substantial work, even more so than other solid organ transplants, and is considered paramount to successful transplantation. The allograft should remain immersed in...
a cold preservation solution-surronded by slushed ice, in a large sterile basin during this preparation. While the length of the duodenal segment does not need to be precise, care should be taken to avoid an excessively lengthy segment, which may be at risk for ischemia, bearing in mind that the entire perfusion is dependent on retrograde flow through the inferior pancreaticoduodenal artery. The limbs of the Y graft should be kept short, typically <1 cm, to minimize the risk of twisting or kinking.

Various approaches exist in regard to the recipient portion such as the initial incision, the position of the graft, the artery and vein used for anastomosis, the type of exocrine drainage, the use of staplers, and the use and location of abdominal drains. The key is to adhere to surgical principles so that regardless of the approach, good outcomes will be achieved. For example, with the extraperitoneal approach, it is advisable to open the peritoneum to allow for drainage of peripancreatic fluid.
The more common, systemic drainage was described. For portal venous drainage, the SMV is isolated and utilized. When the common or external iliac vein is used for systemic drainage, it should be completely mobilized in order to facilitate tension free anastomosis. Since it is a larger vessel, when anastomosing to the IVC only enough of the vein needs to be dissected to allow for vascular control, thereby saving time and enabling a less difficult anastomosis.

The head of the pancreas can either be oriented superiorly or inferiorly, and the type of exocrine drainage or surgeon’s preference determines positioning. Of note, an
intrapерitoneal approach is preferred when bladder drainage is utilized. Also, since the head of the pancreas is oriented downward, the vessel anastomoses are approached slightly differently. The iliac vein is often used for venous drainage and requires complete mobilization with division and suture ligation of all branches to allow correct orientation of the portal vein and Y graft. In addition, the arteriotomy and venotomy are placed in a fashion that allows medial placement of pancreas allograft. Since the iliac vessels tend to be more superficial in the right lower quadrant, right-sided implantation is typically pursued. This allows a technically easier anastomosis and left-sided implantation has been correlated with increased risk for graft thrombosis.40

After the allograft is reperfused, bleeding is controlled with the help of suture ligatures and clips. Inspection and palpation over the entire length of the graft should be performed to ensure adequate perfusion.

COMPLICATIONS

In the earlier stages of PTx, in the 1980s, nearly 25% of pancreas transplants failed due to surgical complications.41 More contemporary series demonstrate that there has been significant improvement over the last few decades, with technical failure rates now typically <10%.42 Nevertheless, complications after PTx are not uncommon and typically cause significant morbidity. The most notable complications include thrombosis, pancreatitis, anastomotic leak, infection, rejection, and bowel obstruction. As previously mentioned, additional complications that are unique to the use of bladder drainage include cystitis, metabolic acidosis, bleeding at the duodenal cuff, and fluid losses causing dehydration. Overall, the most common serious surgical complication is vascular thrombosis, which affects approximately up to 12% of transplants, and is the main cause of nonimmunologic graft failure.43

Thrombosis usually presents as hyperglycemia, tenderness over the graft, graft enlargement, and in bladder drainage with hematuria and decreased urinary amylase levels. The diagnosis is made based on ultrasound, CT angiography, magnetic resonance angiography, or conventional angiography. A key piece in preventing complications involves identifying the relevant risk factors. An analysis of vascular thrombosis revealed several risk factors: donor age, death from vascular disease (cardiac or cerebral), the use of an aortic Carrel patch, reconstructions other than the Y-graft, left-sided implantation, and graft pancreatitis.40 In addition to mitigating or avoiding such risk factors, there are various protocols for treating the patient with a form of anticoagulation, whether a heparin infusion, acetylsalicylic acid, or even warfarin.44

The management of vascular thrombosis typically entails exploration and removal of the graft, in order to prevent a leak and sepsis—doing so promptly reduces the risk of morbidity and mortality.45 Rarely, a thrombosis may be safely managed nonoperatively, or with endovascular interventions.45,46 As an alternative to complete removal of the graft, partial removal has been described in the setting of a partially thrombosed graft with a viable remainder.47 Another consolation in the management of thrombosis involves the possibility of simultaneous retransplantation at the time of pancreatectomy of the thrombosed graft, provided the patient is stable.48

Aside from thrombosis, another possible complication is pancreatitis, which can occur either early (typically defined as within 3 months) or late after transplant. In the earlier period, it can be difficult to diagnose, given that hyperamylasemia is seen in up to 35% of patients posttransplant.49 Late-stage pancreatitis occurs on average 28 months after transplant.50 Similar to native pancreatitis, graft pancreatitis typically presents with tenderness over the graft, and may lead to further complications such as abscess, necrosis, fistula, or pseudocyst. Risk factors for early pancreatitis include donor age and obesity, and cold ischemia time. An analysis of late graft pancreatitis, on the other hand, did not reveal any significant risk factors.50 A CT scan may be useful in determining the pancreatic parenchymal viability and the possible need for debridement of pancreatic necrosis. Patients with bladder drainage may be treated with a urinary catheter to prevent reflux as a possible cause of pancreatitis. And for cases of recurrent reflux-induced pancreatitis, it may necessitate a revision to enteric drainage. Otherwise, treatment is similar to that for native pancreatitis, primarily involving bowel rest, along with percutaneous drainage and antibiotics as needed, and outcomes are typically favorable.

Anastomotic leak represents a significant complication, but it has variable significance depending on the method of drainage, whether bladder or enteric. In bladder drainage, duodenal leaks typically occur within the first 3 months postoperatively, are readily diagnosed with a cystogram, and are often not devastating. Such leaks can be managed with prolonged indwelling catheterization to decompress the bladder, which is effective
treatment in the majority of cases. More complex cases may require surgical repair, or conversion to enteric drainage. On the other hand, leakage from an enterically drained graft typically causes sepsis and peritonitis due to enteric spillage. Leaks may occur at any time, although early leaks are technically related, whereas late leaks may be caused by rejection, infection, or ischemia. Leaks are best diagnosed by the CT scan. Once diagnosed, prompt surgical re-exploration is warranted, with a conversion to a Roux en Y drainage, or even graft pancreatectomy if the contamination is severe or the patient is unstable.

Intra-abdominal infection may occur with or without an associated anastomotic leak. Such infections typically occur within the first 30 days postoperatively, and are usually bacterial, but occasionally may be fungal in origin. Risk factors include older donor age, retransplantation, pretransplant peritoneal dialysis, extended preservation time, graft pancreatitis, and immunosuppression with sirolimus. In stable patients, a CT scan is helpful in determining the extent of the infection, and also in diagnosing an associated anastomotic leak. For an isolated infection without a leak, percutaneous drainage and antibiotics are the recommended treatment, and are effective in over 80% of cases.

Like any transplant, PTx can be complicated by immune-mediated rejection. As such, a more complete discussion of rejection can be found elsewhere. However, there are several unique aspects of pancreatic rejection. Monitoring for rejection typically includes measurement of glucose levels, and serum amylase and lipase levels, and in the case of bladder drainage, urinary amylase levels. Yet, such measurements are not highly accurate gauges of rejection, and a tissue biopsy is required to firmly establish a diagnosis of rejection, and its subtype. In a large series, biopsy of the pancreas graft has been shown to have a low rate of clinically significant complications. Alternatively, especially in centers with less experience in pancreas biopsy, a sentinel organ is often biopsied, whether from the kidney graft in the case of a SPK, or from the duodenal patch, though studies have found approximately a 20% rate of discordance between biopsies of a sentinel organ compared to the pancreas graft. Similar to rejection, the long-term infectious complications of PTx are related to the immunosuppression, and are similar to that of other solid organ transplants.

In comparison to whole-organ transplantation, islet transplantation is associated with significantly fewer and less severe complications. The rate of serious complications is ~10%, including the possibilities of portal vein thrombosis and intra-abdominal hemorrhage. Longer-term complications are similar to that of whole-organ transplantation, and relate mostly to infectious complications due to the immunosuppression. Additionally, there is a potential for sensitization and the formation of antibodies.

OUTCOMES

Cardiac function improves within 6 months of PTx, and other peripheral vascular disease PVD may stabilize, although the data are mixed. Most studies show some improvement in neuropathy and gastroenteropathy after transplant. Early nephropathy improves after pancreas transplant, but not retinopathy. Respondents report better quality of life after transplant.

Graft and Patient Survival

Now 3-year patient survival rates after PTx are 89%, with 3-year graft survival rates of 65%. A higher risk of graft failure is associated with solitary pancreas transplants, which leads some centers to have more stringent selection criteria for PTA and PAK.

CONCLUSION AND FUTURE DIRECTIONS

Since its inception nearly 50 years ago, there have been numerous advancements in the field of PTx. As such it has taken root as the definitive treatment for patients with type 1 diabetes and ESRD, and is useful in various other circumstances. As outcomes continue to improve, and complications reduced, the indications for transplant may expand further, particularly for the large pool of patients with type 2 diabetes.

There are several developments on the horizon spanning the entirety of the transplant process, ranging from refining the surgical technique to exploring new immunosuppressive agents. In 2012, Boggi et al. reported their experience with the world’s first robotic-assisted pancreas transplant. The future role of robotics in PTx is yet to be determined, although it may offer a solution for reducing the persistently high rate of surgical complications. Immune therapy has evolved significantly both in efficacy and minimization of toxicity, and there are numerous new drugs being developed and tested, such as the protein kinase C inhibitor—sotrastaurin, the JAK 3 inhibitor—tolfacitinib, the proteasome inhibitor—bortezomib, the
the future of PTx is unpredictable, but the overall outlook is encouraging, and the long-term prospects are open to the imagination, to be filled with the possibilities of surgical innovation, pharmacogenetics, personalized medicine, stem cells, and cellular reprogramming.59

REFERENCES

42. Gruessner AC, Sutherland DER. Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Clin Transplant. 2008;182(4):45-56.

