Atlas of General Surgery
Atlas of General Surgery

Fourth Edition

Compiled by
Sir David Carter
RCG Russell
Henry A Pitt

Revised and Edited by
Sudhir Kumar Jain MS FRCS FICS FACS
Professor
Department of Surgery
Maulana Azad Medical College and Associated Lok Nayak Hospital
Bahadur Shah Zafar Marg
New Delhi, India
Dedicated to
Our wives and children for their patience and support
who missed us during the process of this work
Our parents for their blessings
Our teachers for their wisdom
Our students who inspire us daily
Our patients from whom we continue to learn
Contributors

A Cuschieri MD MDch FRCS FRCSEd
Department of Surgery
University of Dundee
Ninewells Hospital and Medical School
Dundee DD1 9SY, UK

AGA Cowie MA FRCS FACS
Consultant Surgeon
University College Hospital
and St Peter's Hospital at the Middlesex Hospital
London, UK

Ajit Sewkani MS DNB(GI Surgery) FMAS
Assistant Professor
Department of Surgical Gastroenterology and Clinical Nutrition
Bhopal Memorial Hospital and Research Center
Bhopal, Madhya Pradesh, India

Amit Gupta
Department of Surgery
University College of Medical Sciences
Delhi, India

Andre Duranceau MD
Professor of Surgery
Department of Surgery
University of Montreal
Division of Thoracic Surgery
Hôtel-Dieu de Montréal Montreal Quebec, Canada

Anubhav Vindal MD DNB MRCS(Ed)
Senior Research Associate
Department of Surgery
Maulana Azad Medical College and Associated Lok Nayak Hospital
New Delhi, India

Aylwyn Mannell FRCS FRCSEd
Specialist Surgeon, Rosebank and Linksfield Park Clinics and Consultant Surgeon, Baragwanath Hospital and University of Witwatersrand
Johannesburg, South Africa

Bernard W Chang
Assistant Professor
Division of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
Baltimore, Maryland, USA

Christopher B Williams FRCP
Consultant Physician
St Mark's Hospital for Diseases of the Rectum and Colon and Honorary Consultant Physician
The Hospital for Sick Children London, UK

Christopher Martin FRACS
Professor of Surgery
University of Sydney and Head of Surgical Division, Nepean Hospital Penrith, New South Wales, Australia

CV Mann MA MCh FRCS
Consulting Surgeon
The Royal London Hospital and St Mark's Hospital for Diseases of the Rectum and Colon, London, UK

DA Rothenberger MD
Clinical Professor of Surgery and Chief Division of Colon and Rectal Surgery
University of Minnesota Medical School, Minneapolis, Minnesota, USA

David C Carter
MD FRCS(Ed) FRSC (Glas) FRCS FRSE
Regius Professor of Clinical Surgery Royal Infirmary, Edinburgh, UK

David N Armstrong MD FRCS(Ed)
Clinical Instructor
Department of Surgery
Yale University School of Medicine New Haven, Connecticut, USA

Eric Deslandres MD
Assistant Professor
Department of Medicine
University of Montreal
Division of Gastroenterology
Hôtel-Dieu de Montréal Montreal Quebec, Canada

FJ Branicki DM FRCS
Department of Surgery
University of Queensland
Royal Brisbane Hospital Queensland Australia

GG Jamieson MS FRACS FACS
Professor of Surgery
University of Adelaide
Department of Surgery
Royal Adelaide Hospital Adelaide, Australia

GH Ballantyne MD FRACS FACCRS
Associate Professor of Surgery
Department of Surgery
Yale University School of Medicine
New Haven, Connecticut, USA

H Brendan Devlin MA MD MCh FRCS FRCSEd
Consultant Surgeon
North Tees General Hospital Stockton on Tees, Cleveland Associate Lecturer in Clinical Surgery
University of Newcastle upon Tyne Tyne and Wear NE1 7RU United Kingdom

HA Pitt MD
Professor and Vice Chairman Department of Surgery
The Johns Hopkins Medical Institutions Blalock 688, 600 N Wolfe Street Baltimore, Maryland 21287-4688, USA

Haile T Debas MD
M Galante Distinguished Professor of Surgery and Dean of the School of Medicine, University of California San Francisco, California, USA

Hak-Su Goh BSc FRCS
Goh Hak-Su Colon and Rectal Center
Suit 04-08 Gleneagles Medical Center
6 Napier Road, Singapore

Henri Bismuth MD FRACS FRCSEd
Professor of Surgery and Chairman of the Hepatobiliary Centre, Paul Brousse Hospital, Villejuif, France
Hiram C Polk Jr MD
Ben A Reid Sr Professor and Chairman, Department of Surgery
University of Louisville School of Medicine, Louisville, Kentucky, USA

HN Whitfield MA MChir FRCS
Consultant Urologist
St Bartholomew’s Hospital and St Mark’s Hospital for Diseases of the Colon and Rectum, London, UK

James Garden BSc MD FRC(Ed) FRC(Glas)
Senior Lecturer and Honorary Consultant Hepatobiliary Surgeon
University Department of Surgery and Scottish Liver Transplantation Unit, Royal Infirmary, Edinburgh, UK

James PS Thomson DM MS FRCS
Consultant Surgeon and Clinical Director
St Mark’s Hospital for Diseases of the Rectum and Colon, London
Honorary Consultant Surgeon
St Mary’s Hospital, London
Honorary Lecturer in Surgery
Medical College of St Bartholomew’s Hospital, London
Civil Consultant in Surgery, Royal Air Force and Civilian Consultant in Colorectal Surgery, Royal Navy, UK

JC Goligher FRCS
Emeritus Professor of Surgery
University of Leeds, Leeds, UK

JJ Murray MD
Staff Surgeon
Department of Colon and Rectal Surgery
Lahey Clinic Medical Center
Burlington, Massachusetts, USA

JL Chassin MD
Chairman, Department of Surgery
The New York Hospital Medical Center of Queens
New York, USA

JL Grosfeld
Professor and Chairman
Department of Surgery
Indiana University School of Medicine, and Surgeon-in-Chief
James Whitcomb Riley Hospital for Children, Indianapolis, Indiana, USA

John E Meilahn MD
Assistant Professor of Surgery
Department of Surgery, Temple University School of Medicine
Philadelphia, Pennsylvania, USA

John P Pyor MS FRCS
Consultant Uroandrologist
King’s College and St Peter’s Hospital at The Middlesex Hospital
London, UK

John R Oakley FRACS
Staff Surgeon and Head
Section of Enterostomal Therapy
Department of Colorectal Surgery
The Cleveland Clinic Foundation
Cleveland, Ohio, USA

John U Bascom MD PhD FACS
Consulting and Attending Surgeon
Sacred Heart General Hospital
Eugene, Oregon, USA

JP Blandy MA MCh FRCS FACS
Professor of Urology
The Royal London Hospital
London, UK

JSP Lumley MS FRCS
Professor in Vascular Surgery
St Bartholomew’s Hospital
London, EC1A 7BE, UK

Karl A Zucker MD FACS
Professor of Surgery
University of New Mexico School of Medicine
Albuquerque, New Mexico, USA

MJ Notaras RS FRC(Ed) FRC(Glas)
Consultant Surgeon
Barnet General Hospital and Honorary Senior Lecturer and Consultant Surgeon
University College Hospital
London, UK

Mark A Malias MD
Resident Surgeon
Department of Surgery
University of Louisville School of Medicine, Louisville, Kentucky, USA

Mark Killingback FRC FRC(Ed) FRACS
Sydney Adventist Hospital
Sydney, NSW, Australia

MC Veidenheimer MD
Vice Chairman
Department of Surgery
HCl International Medical Centre
Clydebank, UK

Michael W Mulholland MD
Associate Professor
Department of Surgery
University of Michigan
Ann Arbor, Michigan, USA

NA Matheson ChM FRCS FRC(Ed)
Consultant Surgeon
Aberdeen Royal Infirmary and Honorary Senior Lecturer
University of Aberdeen
Aberdeen, UK

MC Veidenheimer MD
Vice Chairman
Department of Surgery
HCl International Medical Centre
Clydebank, UK

Michael W Mulholland MD
Associate Professor
Department of Surgery
University of Michigan
Ann Arbor, Michigan, USA

NA Matheson ChM FRCS FRC(Ed)
Consultant Surgeon
Aberdeen Royal Infirmary and Honorary Senior Lecturer
University of Aberdeen
Aberdeen, UK

NP Madden MA FRCS
Consultant Paediatric Surgeon
Westminster Children’s Hospital
London, UK

Paul Shuka
Department of Gastrointestinal and Hepatopancreatobiliary Surgical Oncology
Tata Memorial Hospital
Mumbai, Maharashtra, India

PC Bornman FRCS(Ed) MMed (Surg)
Professor of Surgery and Head of Surgical Gastroenterology
University of Cape Town and Groote Schuur Hospital, Cape Town
South Africa

Peter H Lord OBE MChir FRCS
Formerly Consultant Surgeon
Wycombe General Hospital
High Wycombe, UK

PL Harms MD FRCS
Consultant Vascular Surgeon
Royal Liverpool University Hospital
Liverpool, UK

PN Agarwal
Department of Surgery
Maulana Azad Medical College
New Delhi, India
Contributors

PR Hawley MS FRCS
Senior Consultant Surgeon
St Mark’s Hospital for Diseases of the Rectum and Colon and
Consultant Surgeon
King Edward VII Hospital
London, UK

PRF Bell MD FRCS
Professor of Surgery
Leicester Royal Infirmary
Leicester, UK

RCG Russell MS FRCS
Consultant Surgeon
The Middlesex Hospital
London, UK

RCM Kaza MS
Professor of Surgery
Maulana Azad Medical College
New Delhi, India

RH Grace FRCS
Consultant Surgeon
The Royal and New Cross Hospitals
Wolverhampton, UK

Rohan Tanwar
Surgery Resident
Maulana Azad Medical College
New Delhi, India

RJ Heald MA MChir FRCS ERCSE
Consultant Surgeon
Colorectal Research Unit
Basingstoke District Hospital
Basingstoke, Hampshire, UK

Robert Udelsman MD FACS
Associate Professor and Director of
Endocrine and Oncologic Surgery
The Johns Hopkins Hospital
Baltimore, Maryland, USA

Robin KS Phillips MS FRCS
Consultant Surgeon, St Mark’s
Hospital for Diseases of the Rectum
and Colon and Homerton Hospital
London, and Honorary lecturer
St Bartholomew’s Hospital Medical
School, London, UK

S Paterson-Brown MS MPhil FRCS(Ed) FRCS
Consultant Surgeon
University Department of Surgery
Royal Infirmary, Edinburgh, UK

Sean J Mulvihill MD
Attending Surgeon, The Medical
Center at the University of
California, and Associate Professor
of Surgery, Department of Surgery
University of California
San Francisco, California, USA

Srdjan C Rakic MD PhD FACS
Associate Professor of Surgery
Belgrade University School of
Medicine, and Chief
Division of Esophageal Surgery
Institute of Digestive Diseases
Belgrade, Yugoslavia

Su-Anna M Boddy BSc FRCS
Senior Registrar in Pediatric Surgery
Maulana Azad Medical College
New Delhi, India

Subodh Varshney
MS FRCS FACS MNAMS FACG FIAGES
Diploma GI Surgery (France)
Professor and Head
Department of Surgical
Gastroenterology and Clinical
Nutrition
Bhopal Memorial Hospital and
Research Center
Bhopal, Madhya Pradesh, India

Sudhir Kumar Jain MS FRCS FACS
Professor, Department of Surgery
Maulana Azad Medical College and
Associated Lok Nayak Hospital
New Delhi, India

TG Allen-Mersh MD FRCS
Consultant Surgeon
Westminster Hospital
London, UK

Victor W Fazio FRACS FACS
Chairman
Department of Colorectal Surgery
The Cleveland Clinic Foundation
Cleveland, Ohio, USA

VK Ramteke MS FRCS
Director, Professor and Head of
Surgery
Maulana Azad Medical College
New Delhi, India

Wallace P Ritchie Jr MD PhD
Professor and Chairman
Department of Surgery
Temple University School of
Medicine Philadelphia
Pennsylvania, USA

ZH Krukowski PhD FRCS(Ed)
Consultant Surgeon
Aberdeen Royal Infirmary
and Honorary Senior Lecturer
University of Aberdeen
Aberdeen, UK
Contributing Medical Artists

Antoine Barnaud
11 Rue Jacques Dulud
92200 Neuilly Sur Seine, France

Andrew Bezear
6 Queen Street, Godalming
Surrey GU7 1BD, UK

Diane Bruynickx MMAA AIMI
20 Van Halmaelelei
B-2930 Brasschaat, Belgium

Joanna Cameron BA(Hons) MMAA
11 Pine Trees, Portsmouth Road
Esher, Surrey KT10 9JF, UK

Angela Christie MMAA
14 West End Avenue, Pinner
Middlesex HA5 1Bj, UK

Peter Cox RDD MMAA AIMI
Canon Frome Court
Canon Frome, Ledbury
Herefordshire HR8 2TD, UK

Susan Darrington
PO Box 581, Subiaco
Western Australia 6008

Marc Donon
45 Avenue Felix, Faure
75015 Paris, France

Patrick Elliott BA(Hons) ATC MMAA AIMI
46 Stone Delf
Sheffield S10 3QX, UK

Raymond Evans BA(Hons) MMAA
Unit of Art in Medicine
Department of Cell and Structural Biology
University of Manchester
Manchester M13 9PT, UK

Jenny Halstead MMAA
The Red House, 85 Christchurch Road
Reading, Berkshire RG2 7BD, UK

Mark Iley BA(Hons)
12 High Street, Great Missenden
Buckinghamshire HP16 9AB, UK

Diane Kinton BA(Hons)
Gillian Lee Illustrations
15 Little Plucketts Way, Buckhurst Hill
Essex IG9 5QU, UK

The late Robert Lane MMAA
Studio 19A, Edith Grove
London SW10, UK

Gillian Lee BMMA HonRMI AIMI RMIP
Gillian Lee Illustrations
15 Little Plucketts Way, Buckhurst Hill
Essex IG9 5QU, UK

Marks Creative Consultants
4 Harrison’s rise, Croydon
Surrey CR0 4LA, UK

Richard Neave MMAA AIMI
Unit of Art in Medicine
Department of Cell and Structural Biology
University of Manchester
Manchester M13 9PT, UK

Gillian Oliver MMAA AIMI
15 Bramble Road, Hatfield
Hertfordshire AL10 9RZ, UK

Paul Richardson BA(Hons)
54 Wellington Road
Orpington
Kent BR5 4AQ, UK

Denise Smith BA(Hons) MMAA
Unit of Art in Medicine
Department of Cell and Structural Biology
University of Manchester
Manchester M13 9PT, UK

Philip Wilson MMAA AIMI
23 Normanshurst Road
St Paul’s Cray
Orpington
Kent BR5 3AL, UK
Preface to the Fourth Edition

The *Atlas of General Surgery* has been one of the highly acclaimed and read books on operative surgery across the globe. It has transcended the borders of time, and it is a matter of great honor that the book we used to read as a student of surgery has been brought again in my hands by destiny to be revised and edited. The atlas has put the complex art of surgery into simple words and it has been our endeavor to maintain the tradition which makes the atlas a present favorite. The atlas has found place in hearts of practicing surgeons and students alike due to easy-reference and lucid explanations. To keep in touch with the rapidly changing surgical principles and technologies that have taken place over a decade, the mammoth task has been adequately accomplished to bring the world standard practice to you.

The atlas bears many additions to the list of contents which is reflective of the rapid progress that has been made by the surgical fraternity in the field of laparoscopy. Numerous chapters on laparoscopic management of surgical conditions have been added to cover this dynamically changing front. On the other hand, there has been a critically selected deletion of chapters on procedures that have taken a back seat in the modern era. The chapters have also undergone revisions based on the present foundations of diagnosis and management. We have made a sincere effort to give a new face to the atlas by adding intraoperative photographs and making all diagrams multicolored. Legends and labels have been added to all figures to make them easy to understand. We hope that our readers find the new edition useful for their daily practice and learning.

Sudhir Kumar Jain
Acknowledgments

First of all, I would like to thank Dr Raman Tanwar, Dr Anubhav Vindal, Professor Vinod Kumar Ramteke, Professor RCM Kaza, Professor Subodh Varshney for their untiredly contribution in this atlas. We express our gratitude to Mrs Poonam Kumar and Dr Aparajita Mitra for making illustrative and informative diagrams.

Our sincere thanks to Shri Jitendar P Vij, Chairman and Managing Director of M/s Jaypee Brothers Medical Publishers for his encouragement and support.

We express our special thanks to Mr Tarun Duneja (Director-Publishing), Mr KK Raman (Production Manager), Mr Rakesh Verma (Graphic Designer), Mr Akhilesh Kumar Dubey, Mr Pramod Kumar Rout, Mr Ravinder Kumar, and Mr Subrato Adhikary and the whole team of Jaypee Brothers Medical Publishers for their professionalism and vision in bringing out this book in its present form.
Contents

SECTION 1: Skin, Subcutaneous Tissue, Breast and Hernia

1. Surgery of Skin and Subcutaneous Tissue
 Bernard W Chang, Anubhav Vindal
 3

2. Repair of Pediatric Umbilical Hernia
 JL Grosfeld, Anubhav Vindal
 17

3. Repair of Umbilical Hernia in Adults
 H Brendan Devlin, Sudhir Kumar Jain
 21

4. Repair of Epigastric Hernia
 H Brendan Devlin, Raman Tanwar
 29

5. Tension Free Mesh Hernioplasty for Groin Hernia
 Sudhir Kumar Jain, VK Ramteke
 34

6. Tissue Repairs for Groin Hernia
 Sudhir Kumar Jain, Anubhav Vindal
 40

7. Laparoscopic Total Extraperitoneal Repair for Groin Hernia
 Sudhir Kumar Jain, RCM Kaza
 50

8. Femoral Hernia Repair
 H Brendan Devlin, Anubhav Vindal
 55

9. Concepts in Open Incisional Hernia Repair
 Sudhir Kumar Jain, Raman Tanwar
 66

10. Surgery for Benign Breast Disease
 Sudhir Kumar Jain, Raman Tanwar
 72

11. Sentinel Lymph Node Biopsy in Breast Carcinoma
 Sudhir Kumar Jain, Anubhav Vindal
 79

12. Surgery for Malignant Breast Disease
 Sudhir Kumar Jain, Anubhav Vindal, PN Agarwal
 83

SECTION 2: Esophagus and Stomach

13. Flexible Endoscopy of the Upper Digestive Tract
 Andre Duranceau, Eric Deslandres
 99

14. Preoperative Work-up of a Patient with Upper Gastrointestinal Malignancy
 Sudhir Kumar Jain, Anubhav Vindal
 109

15. Esophagectomy through Right Thoracotomy and Laparotomy
 Sudhir Kumar Jain, Anubhav Vindal
 112
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Left Thoracoabdominal Approach for Exposure of the Esophagus</td>
<td>Aylwyn Mannell, Anubhav Vindal, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>17</td>
<td>Sutured Esophageal Anastomosis</td>
<td>Anubhav Vindal, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>18</td>
<td>Anatomy of the Hiatus and Abdominal Esophagus</td>
<td>Hiram C Polk Jr, Mark A Malias, GG Jamieson</td>
</tr>
<tr>
<td>19</td>
<td>Transhiatal Esophagectomy</td>
<td>Sudhir Kumar Jain, Anubhav Vindal, Subodh Varshney</td>
</tr>
<tr>
<td>20</td>
<td>Role of Antireflux Procedures in Modern Era of Medical Management</td>
<td>Sudhir Kumar Jain, Anubhav Vindal</td>
</tr>
<tr>
<td>21</td>
<td>Nissen Fundoplication by Open Technique</td>
<td>Christopher J Martin, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>22</td>
<td>Laparoscopic Nissen Fundoplication</td>
<td>Subodh Varshney, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>23</td>
<td>Open Esophagomyotomy for Achalasia Cardia</td>
<td>Srdjan C Rakic, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>24</td>
<td>Surgical Anatomy of the Vagus Nerve</td>
<td>Haile T Debas</td>
</tr>
<tr>
<td>25</td>
<td>Abdominal Truncal Vagotomy and Drainage</td>
<td>Haile T Debas, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>26</td>
<td>Proximal Gastric Vagotomy</td>
<td>Haile T Debas, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>27</td>
<td>Pyloroplasty</td>
<td>Sean J Mulvihill, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>28</td>
<td>Gastrojejunostomy</td>
<td>Haile T Debas, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>29</td>
<td>Gastrostomy</td>
<td>Sudhir Kumar Jain, Anubhav Vindal</td>
</tr>
<tr>
<td>30</td>
<td>Management of Perforated Peptic Ulcer Disease</td>
<td>FJ Branicki, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>31</td>
<td>Management of Bleeding Peptic Ulcer</td>
<td>John E Meilahn, Wallace P Ritchie Jr, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>32</td>
<td>Gastrectomy: Indications and Types</td>
<td>Sudhir Kumar Jain</td>
</tr>
<tr>
<td>33</td>
<td>Wedge Resection of the Stomach</td>
<td>Sudhir Kumar Jain</td>
</tr>
<tr>
<td>34</td>
<td>Partial Gastrectomy: Indications and Technique</td>
<td>Michael W Mulholland, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>35</td>
<td>Handsewn Techniques for Gastric Anastomoses</td>
<td>ZH Krukowski, NA Matheson, Sudhir Kumar Jain</td>
</tr>
<tr>
<td>36</td>
<td>Stapling Techniques for Gastric Anastomoses</td>
<td>JL Chassin, Sudhir Kumar Jain</td>
</tr>
</tbody>
</table>
SECTION 3: Small Gut, Appendix and Colon

37. General Techniques in Abdominal Laparoscopic Surgery
 Sudhir Kumar Jain, Anubhav Vindal
 281

38. Principles of Intestinal Anastomosis
 Sudhir Kumar Jain, Anubhav Vindal
 290

39. Jejunostomy
 Sudhir Kumar Jain, Anubhav Vindal
 298

40. Ileostomy
 John R Oakley, Victor W Fazio, Sudhir Kumar Jain, Amit Gupta
 302

41. Open Appendicectomy
 Sudhir Kumar Jain, Anubhav Vindal, Raman Tanwar
 323

42. Laparoscopic Appendicectomy
 Robert W Bailey, Karl A Zucker, Sudhir Kumar Jain
 330

43. Colonoscopy and Polypectomy
 Christopher B Williams
 338

44. Colostomy
 Robin KS Phillips, James PS Thomson, Sudhir Kumar Jain, Anubhav Vindal
 355

45. Tube Cecostomy
 Robin KS Phillips, James PS Thomson, Sudhir Kumar Jain
 366

46. Colectomy
 DA Rothenberger, Anubhav Vindal, VK Ramteke
 370

47. Right Hemicolectomy
 Sudhir Kumar Jain, Raman Tanwar
 382

48. Surgery for Sigmoid Volvulus
 David N Armstrong, GH Ballantyne, Sudhir Kumar Jain, Anubhav Vindal
 387

49. Surgery for Diverticular Disease
 Mark Killingback, Anubhav Vindal
 397

SECTION 4: Rectum and Anal Canal

50. Anterior Resection of the Rectum
 JC Goligher, RJ Heald, Sudhir Kumar Jain
 427

51. Abdominoperineal Resection of the Rectum
 Sudhir Kumar Jain, JJ Murray, MC Veidenheimer, Vinod Kumar Ramteke
 445

52. Rectal Prolapse
 Sudhir Kumar Jain, Vinod Kumar Ramteke
 454

53. Management of Uncomplicated Internal Hemorrhoids
 Hak-Su Goh, Sudhir Kumar Jain
 468
SECTION 5: Liver and Biliary Tract

62. Open Cholecystectomy and Exploration of the Common Bile Duct
 David C Carter, S Paterson-Brown, Sudhir Kumar Jain

63. Laparoscopic Cholecystectomy
 A Cuschieri, Sudhir Kumar Jain

64. Choledochojunostomy
 RCG Russel, Sudhir Kumar Jain

65. Surgery for Bile Duct Cancer
 James Garden, Henri Bismuth

66. Principles of Liver Resection
 Farul Shukla, Subodh Varshney

67. Portal Hypertension: An Overview
 Subodh Varshney, Ajit Sewkani

68. Distal Splenorenal Shunt
 Subodh Varshney, Ajit Sewkani

SECTION 6: Pancreas and Spleen

69. Splenectomy
 Sudhir Kumar Jain, Raman Tanwar

70. Laparoscopic Splenectomy
 Sudhir Kumar Jain, RCM Kaza
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.</td>
<td>Pancreatic Necrosectomy: Indications and Techniques</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Subodh Varshney, Sudhir Kumar Jain, Ajit Sewkani</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>Surgical Management of Chronic Pancreatitis</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>Subodh Varshney, Sudhir Kumar Jain, Ajit Sewkani</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>Pancreaticoduodenectomy</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>HA Pitt, Subodh Varshney, Sudhir Kumar Jain, Ajit Sewkani</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>Management of Pseudocyst of Pancreas</td>
<td>643</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, Subodh Varshney</td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td>Distal Pancreatectomy</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>RCG Russell, Subodh Varshney, Sudhir Kumar Jain</td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td>Palliative Surgery for Pancreatic Carcinoma</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>PC Bornman, Sudhir Kumar Jain</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 7: Urology

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.</td>
<td>Surgical Procedures for Renal Calculi</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza, Anubhav Vindal</td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td>Surgical Management of Ureteropelvic Junction Obstruction</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>Surgical Approaches for Kidney and Upper Third of the Ureter</td>
<td>694</td>
</tr>
<tr>
<td></td>
<td>HN Whitfield, Sudhir Kumar Jain, RCM Kaza</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>Surgery for Ureteric Stone</td>
<td>706</td>
</tr>
<tr>
<td></td>
<td>HN Whitfield, Sudhir Kumar Jain, RCM Kaza</td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>Nephrostomy</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza, Anubhav Vindal</td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>Operations for Renal Cell Carcinoma</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>Open Prostatectomy</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza, John P Pryor</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td>Transurethral Resection of Prostate</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td>Sudhir Kumar Jain, RCM Kaza</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>Surgery for Undescended Testis</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>NP Madden, Su-Anna M Boddy, Sudhir Kumar Jain</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td>Surgery for Testicular Torsion</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td>NP Madden, Su-Anna M Boddy, Sudhir Kumar Jain, Anubhav Vindal</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td>Vasectomy</td>
<td>759</td>
</tr>
<tr>
<td></td>
<td>RCM Kaza, Sudhir Kumar Jain</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td>Surgery for Hydrocele</td>
<td>765</td>
</tr>
<tr>
<td></td>
<td>Peter H Lord, Sudhir Kumar Jain, RCM Kaza, Raman Tanwar</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td>Circumcision</td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>JP Blandy, Sudhir Kumar Jain</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 8: Vascular System

90. Management of Varicose Veins
 Sudhir Kumar Jain, Raman Tanwar
 781

91. Aortoiliac Reconstruction: Thromboendarterectomy and Bypass Grafting
 JP Blandy
 788

92. Arterial Suture and Anastomosis
 PL Harris, Sudhir Kumar Jain
 814

93. Exposure of Major Blood Vessels
 PRF Bell
 823

SECTION 9: Endocrine Surgery

94. Adrenalectomy
 JSP Lumley, P Hormick, Sudhir Kumar Jain
 859

95. Thyroidectomy
 Robert Udelsman, Sudhir Kumar Jain
 866

96. Parathyroidectomy
 AGA Cowie, Sudhir Kumar Jain
 880

Index
 891
The portal vein provides the principal venous drainage for the splanchnic circulation, arises behind the head of the pancreas by the communion of the superior mesenteric and splenic vein. Its pressure is expressed conveniently as corrected portal pressure (portal pressure minus central venous pressure). The normal corrected portal pressure (<10 mm of mercury) increases in proportion to the resistance to the flow of blood from the splanchnic to the systemic venous circulation. Numerous anatomic connections between the portal and systemic circulations exist at the level of the hepatic sinusoids, the gastroesophageal junction, the hemorrhoidal plexus in the rectum, and the Retzius veins in the retroperitoneum. When portal pressure is elevated for a long time, a patent umbilical vein may direct portal blood into systemic veins within the abdominal wall, resulting in the physical findings of caput medusae and, often, a venous hum (Cruveilhier-Baumgarten syndrome). Increased splanchnic blood flow associated with a hyper-dynamic systemic circulation is commonly seen in portal hypertension. This increased flow is largely shunted through collateral vessels, bypassing the liver.

Portal hypertension is classified as presinusoidal or postsinusoidal on the basis of the anatomic location of the resistance to portal flow. Prehepatic obstruction of the portal vein results from congenital atresia, thrombosis, or extrinsic compression. Intrahepatic blockages occur in cirrhosis, inborn errors of metabolism, and Schistosomiasis. Schistosoma-miasis and biliary cirrhosis produce a presinusoidal blockage, whereas alcoholic cirrhosis produces a resistance that is primarily intrasinusoidal or postsinusoidal. Posthepatic portal hypertension is associated with the rare Budd-Chiari syndrome.

The underlying cause of portal hypertension influences the options for therapy. The most urgent indication for the surgical treatment of portal hypertension is variceal hemorrhage. Portal pressure must be elevated above a threshold—about 12 mm of mercury—after which wall tension and local structural factors probably interact to produce hemorrhage. Ascites which is another complication associated with raised portal venous pressure is produced by the transudation of fluid from serosal surfaces of bowel and liver capsule resulting from the altered Starling forces within the hypertensive portal circulation. It can be complicated further by primary or secondary bacterial peritonitis. Patients with portal hypertension with liver damage can be stratified according to the child class and MELD score to predict mortality for shunt and nonshunt operations.

Operations to Reduce Portal Pressure

The portal pressure can be reduced below the critical threshold by various shunt operations. All shunts aim to reduce variceal pressures sufficiently to arrest or prevent bleeding. Surgical shunts are classified based on their specific hemodynamic properties as:

- **Total**
- **Selective**
- **Partial shunts.**

An angiographically placed stent, or transjugular intrahepatic portacaval shunt (TIPS), is another option that has recently become available in some centers.
Total Shunts

Total shunts completely divert the Portal blood flow to the inferior vena cava. They are able to arrest hemorrhage in about 95% of cases but at the price of a 40 to 50% incidence of hepatic encephalopathy. Therefore, while there is hardly any place of total shunting in elective surgery, in emergency situations, when bleeding cannot be controlled by less invasive means, total shunts may be lifesaving and encephalopathy becomes a secondary consideration. Portacaval shunts are a yardstick with which all other operations and nonoperative measures for the treatment of portal hypertension should be compared. Whereas shunting decreases the risk of death from hemorrhage, deaths from liver failure overshadow this advantage. Commonly employed total shunts are:

Surgical Insight ...

End-to-side portacaval shunt (Figure 67.1):
Shunting is performed by transecting the portal vein at its bifurcation within the porta hepatis and creating an anastomosis between the end of the portal vein and the side of the inferior vena cava. All portal flow is diverted around the liver, and the splanchnic system is totally decompressed.

Surgical Insight ...

Side-to-side portacaval shunt (Figure 67.2): Side to side shunts differ from the end-to-side shunt is that the portal vein is not transected completely. The shunt can be direct vein to vein shunt or a short graft may be placed in between the two veins. These shunts have an intact upper end of the portal vein which decompresses the sinusoids in addition to controlling bleeding and ascites. A variation of this shunt is the large-diameter portacaval H-graft in which a prosthetic graft about 16 mm in diameter is used to shunt blood from the portal vein to the cava.
Mesocaval shunt: The inferior vena cava is divided and anastomosed end-to-side to the superior mesenteric vein. Alternatively, a prosthetic graft is positioned between the superior mesenteric vein and the inferior vena cava. The technique is similar to the portacaval H-graft. An advantage is that the shunt is far enough from the porta hepatis that the required dissection adds little difficulty to subsequent liver transplantation. A disadvantage of the mesocaval H-graft is that the graft is relatively long, so there is a greater risk of graft occlusion by kinking or thrombosis. Results are comparable with other total shunts.

Selective Shunts

1. Distal splenorenal shunt: The distal splenorenal shunt was developed to avoid the high rate of encephalopathy associated with the use of total shunts as a result of portoprival syndrome. Anastomosing the distal splenic vein to the left renal vein selectively decompresses the gastric and splenic veins while maintaining relatively high pressures in the mesenteric and portal veins. Dividing the left gastric (coronary) vein and disconnecting the gastrosplenic and portal-mesenteric compartments by collateral ligation remain an important part of the procedure. Hepatopedal blood flow is preserved initially, with a low incidence of encephalopathy. However in patients with alcoholism, collateral channels tend to dilate over time, eventually converting the selective shunt to a total one. This shunt usually not used in emergencies because portal decompression is selective, requiring time for bleeding to stop, and the procedure itself is time-consuming. Many surgeons advocate adequate control of hemorrhage with the use of this shunt which is nearly equivalent to that for total shunts (about 85%), and the incidence of encephalopathy is rare (<10%). As an elective procedure in patients with portal hypertension from causes other than alcoholic cirrhosis, the Warren shunt is an effective and durable operation with extensive application worldwide. The Warren distal splenorenal shunt is particularly well suited for managing patients with extrahepatic portal vein thrombosis, of whom about 80% will have a patent splenic vein and thus be candidates for this procedure.

2. Partial shunts: The use of Partial shunts was first proposed by Bismuth and associates. Partial decompression of the portal vein to a pressure less than the critical threshold should stop variceal hemorrhage which occurs above a corrected portal pressure threshold of 12 mm of mercury. While preserving hepatopedal blood flow and preventing encephalopathy. Partial shunts preserved hepatopedal flow in 90% of patients and had a notably reduced incidence of encephalopathy. Its Long-term patency rates exceed 95%. Present recommendation is using small-diameter H-grafts for patients with Child class A or B alcoholic cirrhosis and at least one previous episode of variceal hemorrhage. Although this procedure has succeeded for the emergency control of bleeding and in patients with Child class C cirrhosis, the associated high mortality (around 50%) is unacceptable. In class C cirrhosis that cannot be improved by medical management, a rational alternative is TIPS followed by liver transplantation.

3. Transjugular intrahepatic portacaval shunt: This procedure is done by means of a percutaneous puncture of the right internal jugular vein under fluoroscopy and ultrasonography guidance. Using a modification of the Seldinger technique, a guide wire is inserted into an intrahepatic branch of a hepatic vein. A needle is advanced over the guide wire through the substance of the liver into a nearby branch of the portal vein. The resulting tract is dilated with a balloon and an expandable stent of 8 to 10 mm in diameter is positioned to maintain patency of the communication between hepatic and portal veins.

A patent portal vein is necessary for the performance of TIPS. The advantages of TIPS include immediate portal decompression, the avoidance of general anesthesia, and a lack of intrusion into the portal hepati. Disadvantages include technical failure, shunt stenosis or thrombosis in 30 to 50% of patients at one year, with the possibility of rebleeding and other complications such as shunt migration or intra-abdominal hemorrhage. The reported early mortality for emergency TIPS ranges from 30 to 56%.

Esophageal Transection and Devascularization Surgery for Bleeding Varices

Sugiura and Futagawa described a complex procedure for the control of variceal bleeding, consisting of dividing and reanastomosing the gastroesophageal junction, followed by suture ligating the remaining collaterals on the surface of the stomach. Sugiura’s original operation requires doing both a laparotomy and a thoracotomy and aims at directly obliterating varices to occlude their inflow through dilated collateral vessels. Rebleeding rates after this procedure vary widely. Mortality is related to the
severity of underlying liver disease and to the urgency of the procedure as with other shunt procedures. Substantial complications can include anastomotic leaks and stenosis, but the rates of encephalopathy are uniformly low, around 5 to 10% overall.

A less complicated modification involves simultaneous transection and reanastomosis of the distal esophagus using a surgical circular stapler introduced into the esophageal lumen through an incision in the stomach which can also be combined with suture ligation of the left gastric vein. The aim is to interrupt inflow to the varices without obliterating them directly. For patients for whom medical therapy fails, but who cannot be shunted (because of portal vein thrombosis, for example), esophageal transection and reanastomosis is a satisfactory option.

Surgical Treatment of Ascites

For the specific control of ascites, two types of peritoneovenous shunts are available. The LeVeen shunt and Denver shunt. The LeVeen shunt consists of a silicone conduit with a passive, pressure-actuated, one-way valve. One end of the shunt is placed in the peritoneal cavity by a minilaparotomy. The shunt is tunneled subcutaneously to the neck where the other end is secured in the internal jugular vein. The Denver shunt is similar except that its one-way valve is placed over a rib where it can be actively pumped by external compression. These shunts aim to immediately recirculate ascites fluid into the vascular compartment. Ascites is gradually abolished, but the potential for variceal hemorrhage may be increased due to hypervolemia and coagulopathy. As a last resort, peritoneovenous shunts may improve the quality of life for patients with refractory, disabling ascites but with considerable risk. Other associated complications include congestive heart failure from volume overload, infection, venous thrombosis, and eventual occlusion.

Liver Transplantation

Liver transplantation has become increasingly successful in recent years because of improvements in organ preservation, surgical technique, critical care, and immunosuppression. Transplantation corrects portal hypertension along with restoration of hepatic function. Patients with variceal bleeding who have adequate hepatic reserve or reversible liver failure are shunted instead. Those with end-stage liver failure (manifested by persistent jaundice, encephalopathy, and inadequate synthetic capacity) are considered for transplantation. Portal vein thrombosis, until recently an important obstacle to transplantation, can now be dealt with using techniques to bypass or reconstruct the obstructed portal vein. Mesocaval shunts, the distal splenorenal shunt, and TIPS are considered less likely to cause difficulty for a transplantation surgeon when compared with other shunt procedures. It is important to weigh the likelihood of a future need for transplantation against the immediate need for controlling hemorrhage when choosing initial therapy for variceal bleeding.