ECG Made Easy®

System requirement:
- Operating System – Windows Vista or above
- Recommended Web Browser – Google Chrome and Mozilla Firefox
- Essential plugins – Java and Flash player
 - Facing problems in viewing content – it may be your system does not have java enabled.
 - If Videos don’t show up – it may be the system requires Flash player or need to manage flash setting. To learn more about flash setting click on the link in the help section.
You can test java and flash by using the links from the help section of the CD/DVD.

Accompanying CD/DVD-ROM is playable only in Computer and not in DVD player.
CD/DVD has Autorun function – it may take few seconds to load on your computer. If it does not works for you then follow the steps below to access the contents manually:
- Click on my computer
- Select the CD/DVD drive and click open/explore – this will show list of files in the CD/DVD
- Find and double click file – “launch.html”
CD Contents

- The Technique of Recording an ECG.
ECG Made Easy®

Fifth Edition

Atul Luthra
MBBS MD DNB
Diplomate National Board of Medicine
Physician, Cardiologist and Diabetologist
New Delhi, India
www.atulluthra.in
dratulluthra@gmail.com
Dedicated to

My Parents
Ms Prem Luthra
and
Mr Prem Luthra
who guide and bless me
from heaven
The imaging techniques of contemporary ‘high-tech’ cardiology have failed to eclipse the primacy of the 12-lead ECG in the initial evaluation of heart disease. This simple, cost-effective and readily available diagnostic modality continues to intrigue and baffle the clinician as much as it confuses the student. A colossal volume of literature on understanding ECG bears testimony to this fact.

This book is yet another humble attempt to bring the subject of ECG closer to the hearts of students and clinicians in a simple and concise form. As the chapters unfold, the subject gradually evolves from basics to therapeutics. Although emphasis is on ECG diagnosis, causation of abnormalities and their clinical relevance are briefly mentioned too. This should help students preparing for their examinations without having to search through voluminous textbooks.

While some arrhythmias are harmless, others are ominous and life-threatening. The clinical challenge lies in knowing the cause of an arrhythmia, its significance, differential diagnosis and practical aspects of management. Therefore, seemingly similar cardiac rhythms are discussed together under individual chapter headings. Medical students, resident doctors, nurses and technicians will find this format particularly useful.

I have thoroughly enjoyed the experience of writing this book and found teaching as pleasurable as learning. Since the scope for further refinement always remains, it is a privilege to bring out the vastly improved 5th edition of *ECG Made Easy*. Your appreciation, comments and criticisms are bound to spur me on even further.

Atul Luthra
ACKNOWLEDGMENTS

I am extremely grateful to:

• My school teachers who helped me to acquire good command over the English language.
• My professors at medical college who taught me the science and art of electrocardiography.
• My heart patients whose cardiograms stimulated my brain cells to make me a wiser clinician.
• Authors of textbooks on clinical cardiology to which I referred liberally, while preparing the manuscript.
• My esteemed readers of earlier editions, whose generous appreciation and valuable criticism keep me going.
• My soulmate Reena who is a source of constant inspiration to me and appreciates all my academic pursuits.
• Shri Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President) and Mr Tarun Duneja (Director–Publishing) of M/s Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India, who repose their unflinching faith in me and my writing ability.
CONTENTS

1. **Nomenclature of ECG Deflections**
 - Electrocardiogram
 - Electrophysiology
 - Deflections
 - Intervals
 - Segments

2. **Electrocardiographic Leads**
 - Electrocardiographic Leads
 - Limb Leads
 - Chest Leads
 - Lead Orientation
 - Einthoven Triangle

3. **Electrocardiography Grid and Normal Values**
 - Electrocardiography Grid
 - Normal ECG Values

4. **Determination of Electrical Axis**
 - Electrical Axis
 - Hexaxial System
 - QRS Axis
 - Determination of QRS Axis
 - Abnormalities of QRS axis

5. **Determination of Heart Rate**
 - Heart Rate
 - Heart Rhythm

6. **Abnormalities of the P Wave**
 - Normal P Wave
 - Absent P Wave
 - Inverted P Wave

Changing P Wave Morphology 53
Tall P Wave 54
Broad P Wave 55

7. **Abnormalities of QRS Complex** 58
Normal QRS Complex 58
Low Voltage QRS Complex 59
Alternating QRS Voltage 60
Abnormal QRS Axis 61
Fascicular Block or Hemiblock 63
Nonprogression of R Wave 65
Abnormal Q Waves 67
Abnormally Tall R Waves 69
Abnormally Deep S Waves 75
Abnormally Wide QRS Complexes 75

8. **Abnormalities of the T Wave** 84
Normal T Wave 84
Inverted T Wave 84
Tall T Wave 93

9. **Abnormalities of the U Wave** 97
Normal U wave 97
Prominent U Wave 97
Inverted U Wave 98

10. **Abnormalities of PR Segment** 100
PR Segment Depression 100

11. **Abnormalities of ST Segment** 102
ST Segment Depression 102
ST Segment Elevation 108

12. **Abnormalities of PR Interval** 115
Normal PR Interval 115
Prolonged PR Interval 116
Shortened PR Interval 117
Variable PR Interval 120
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Abnormalities of QT Interval</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Normal QT Interval</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Shortened QT Interval</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Prolonged QT Interval</td>
<td>123</td>
</tr>
<tr>
<td>14.</td>
<td>Premature Beats in Regular Rhythm</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Premature Beats</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Atrial Premature Complex</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Junctional Premature Complex</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Ventricular Premature Complex</td>
<td>128</td>
</tr>
<tr>
<td>15.</td>
<td>Pauses During Regular Rhythm</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Pauses During Rhythm</td>
<td>138</td>
</tr>
<tr>
<td>16.</td>
<td>Fast Regular Rhythm with Narrow QRS</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Regular Fast Rhythm</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Sinus Tachycardia</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Atrial Tachycardia</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Atrial Flutter</td>
<td>153</td>
</tr>
<tr>
<td>17.</td>
<td>Normal Regular Rhythm with Narrow QRS</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Regular Normal Rhythm</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Normal Sinus Rhythm</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Atrial Tachycardia with 2:1 AV Block</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Atrial Flutter with 4:1 AV Block</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Junctional Tachycardia</td>
<td>164</td>
</tr>
<tr>
<td>18.</td>
<td>Fast Irregular Rhythm with Narrow QRS</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Irregular Fast Rhythm</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Atrial Tachycardia with AV Block</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Atrial Flutter with Varying AV Block</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Multifocal Atrial Tachycardia</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Atrial Fibrillation</td>
<td>171</td>
</tr>
<tr>
<td>19.</td>
<td>Fast Regular Rhythm with Wide QRS</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Fast Wide QRS Rhythm</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Ventricular Tachycardia</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Supraventricular Tachycardia with Aberrant Ventricular Conduction</td>
<td>182</td>
</tr>
</tbody>
</table>
Supraventricular Tachycardia with Preexisting QRS Abnormality

183

20. Normal Regular Rhythm with Wide QRS

- Normal Wide QRS Rhythm 190
- Accelerated Idioventricular Rhythm 190

21. Fast Irregular Rhythm with Bizarre QRS

- Irregular Wide QRS Rhythm 194
- Ventricular Flutter 194
- Ventricular Fibrillation 195

22. Slow Regular Rhythm with Narrow QRS

- Regular Slow Rhythm 201
- Sinus Bradycardia 201
- Junctional Escape Rhythm 202
- Sinus Rhythm with 2:1 SA Block 204
- Sinus Rhythm with 2:1 AV Block 204
- Blocked Atrial Ectopics in Bigeminy 205

23. Slow Irregular Rhythm with Narrow QRS

- Irregular Slow Rhythm 209
- Sinus Arrhythmia 209
- Wandering Pacemaker Rhythm 210
- Sinus Rhythm with Varying SA Block 212
- Sinus Rhythm with Varying AV Block 212

24. Slow Regular Rhythm with Wide QRS

- Slow Wide QRS Rhythm 216
- Complete AV Block 216
- Complete SA Block 218
- External Pacemaker Rhythm 219
- Slow Rhythm with Pre-existing Wide QRS Complexes 220

25. Interesting Cases Diagnosed by ECG

- Case 1: Left Ventricular Hypertrophy 226
- Case 2: Left Bundle Branch Block 229
- Case 3: Features of Hypokalemia 232
- Case 4: Features of Hyperkalemia 236
Case 5: Prolonged QT Syndrome 240
Case 6: Sick Sinus Syndrome 244
Case 7: Early Repolarization Syndrome 247
Case 8: Brugada Syndrome 251
Case 9: WPW Syndrome 254
Case 10: Supraventricular Tachycardia 257
Case 11: Atrial Fibrillation 261
Case 12: Ventricular Tachycardia 266

26. How to Report an ECG 269
 How to Report an ECG 269

27. ECG Findings in Specific Situations 272
 Absence of Heart Disease 272
 Congenital Heart Disease 272
 Valvular Heart Disease 273
 Coronary Artery Disease 274
 Myocardial Disease 274
 Pericardial Disease 275
 Pulmonary Disease 275

Index 277
NORMAL WIDE QRS RHYTHM

A regular cardiac rhythm at a rate of 60–100 beats per minute is considered to be a normal rhythm. If the QRS complexes during such a rhythm are wide, it indicates abnormal intraventricular conduction of the impulses from the SA node. The P waves and the QRS complexes during sinus rhythm maintain a 1:1 relationship with each other.

The well-known causes of wide QRS complexes during sinus rhythm are bundle branch block, intraventricular conduction defect and Wolff-Parkinson-White (WPW) syndrome. There is one more condition where wide QRS complexes arise from a ventricular pacemaker at a rate of 60–100 beats/minute and is known as accelerated idioventricular rhythm (AIVR).

Let us see how this rhythm differs from sinus rhythm with wide QRS complexes.

ACCELERATED IDIOVENTRICULAR RHYTHM

Accelerated idioventricular rhythm (AIVR) is an ectopic rhythm originating from a latent subsidiary pacemaker located in the ventricular myocardium. Normally, such a
pacemaker is subdued when the cardiac rhythm is governed by the SA node.

However, when a ventricular pacemaker undergoes enhancement of its inherent automaticity, it produces an idioventricular rhythm. Since the heart rate during such rhythm exceeds the inherent ventricular rate, it is known as accelerated idioventricular rhythm (AIVR).

AIVR produces a regular rhythm at a rate of 60–100 beats/minute that is greater than the inherent rate of the ventricular pacemaker which is 20–40 beats/minute. The QRS complexes are bizarre and wide because of ventricular origin of the rhythm (Fig. 20.1).

The distinctive feature of AIVR is atrioventricular dissociation or lack of relationship between the P waves and the QRS complexes. This is because, the ventricles are activated by the ventricular pacemaker, and the atria continue to be activated by the SA node.

AIVR can be differentiated from ventricular tachycardia only by the ventricular rate. The rate is 60–100 beats/minute.
in AIVR and 150–200 beats/minute in VT, although both rhythms originate from the ventricles.

Clinical Relevance of Regular Wide QRS Rhythm

Sinus Rhythm with Wide QRS Complexes

A normal sinus rhythm when associated with a conduction abnormality in the ventricles, produces wide QRS complexes. The morphology of the QRS complex depends upon the cause of the conduction abnormality. Importantly, the 1:1 P-QRS relationship is maintained during sinus rhythm.

The significance of wide QRS complexes during sinus rhythm depends upon the cause of QRS widening. Causes of wide QRS complexes are:
- Complete bundle branch block
- Intraventricular conduction defect
- Ventricular pre-excitation syndrome.

Accelerated Idioventricular Rhythm

AIVR is most often observed in coronary care units in a setting of acute myocardial infarction. It either occurs spontaneously or as a reperfusion arrhythmia after thrombolytic therapy. Other infrequent causes of AIVR are:
- Digitalis toxicity
- Rheumatic carditis
- Cardiac surgery.

The above causes of AIVR are quite akin to those of a junctional tachycardia or accelerated idiojunctional rhythm. Both are examples of an idiofocal tachycardia.

AIVR is most often picked up from the monitor screen of an intensive coronary care unit (ICCU). It needs to be differentiated from its more serious counterpart, ventricular tachycardia that often produces hemodynamic
embarrassment, carries a poor prognosis and requires aggressive management. AIVR differs from VT, only in terms of the ventricular rate.

AIVR also needs to be differentiated from bundle branch block of recent onset, which is not uncommon in an ICCU setting. While AIVR produces bizarre and wide QRS complexes unrelated to P waves, bundle branch block is associated with a triphasic QRS contour and a maintained P-QRS relationship.

AIVR is usually asymptomatic as it occurs at the same rate range as sinus rhythm. It rarely causes serious hemodynamic embarrassment. Only the loss of atrial contribution to ventricular filling (AV dissociation) causes slight fall in cardiac output.

AIVR is usually transient and does not herald the onset of serious ventricular arrhythmias. Therefore, it is considered to be a benign arrhythmia with an excellent prognosis.

Active treatment of AIVR is generally not required as it is transient, asymptomatic and has few hemodynamic consequences. The hallmark of management of AIVR is constant observation. If treatment is required, it is only in patients with poor left ventricular function.

Atropine can be administered to accelerate the sinus rate, overdrive the ventricular rhythm and eliminate atrioventricular dissociation. Antiarrhythmic drugs, DC cardioversion and artificial pacing are unnecessary in the management of accelerated idioventricular rhythm.