Practical Procedures in Pediatric Nephrology

Salient Features

- This book is a humble attempt in compiling various practical procedures that one has to undertake while practicing pediatric nephrology.
- Covers the most of the practical procedures and tries to remain true to its mission of delivering concise but precise step-by-step guidance even of complicated procedures.
- All the chapters have been contributed by eminent national and international pediatricians and pediatric nephrologists who have been practicing in their field for a long time.
- It will eventually become an indispensable companion for the trainees as well as for the units delivering pediatric nephrology services.
Practical Procedures in
PEDIATRIC NEPHROLOGY

Editors
Subal Kumar Pradhan
MD FPN FISPN FIPNA
Advanced Fellowship in Pediatric Nephrology
(McGill Health University, Canada)
Assistant Professor
Sardar Vallabhbhai Patel Post Graduate
Institute of Paediatrics
Cuttack, Odisha, India

Rajiv Sinha
MD MNAMS FRCPCH (UK) CCT Paed Nephrology (UK)
Fellowship Paed Nephrology (Canada)
Associate Professor and Head
Department of Pediatric Nephrology
Institute of Child Health, Kolkata
Consultant
Department of Pediatric Nephrology
AMRI Hospital and Fortis Hospital
Kolkata, West Bengal, India
Practical Procedures in Pediatric Nephrology

First Edition: 2017
ISBN: 978-93-86322-77-7

Printed at
Dedicated to

Our families, our mentors and all children we care for.
Contributors

Aditi Sinha MD FISPNIIPNA
Assistant Professor
Department of Pediatric Nephrology
All India Institute of Medical Sciences
New Delhi, India

A Saha MD FPN
DM Trainee (Pediatric Nephrology)
Division of Pediatric Nephrology
St John’s Medical College Hospital
Bengaluru, Karnataka, India

Arpana Iyenger MD DNB FPN
Professor and Head
Department of Pediatric Nephrology
St John’s Medical College Hospital
Bengaluru, Karnataka, India

Birendra K Das MD FAR ANM FAS (Germany) FICNMFABMS FAMS
Director and Chief
Department of Nuclear Medicine
Utkal Institute of Medical Sciences
Bhubaneswar, Odisha, India

Geetha S MD DCH DNB M Phil (Epidemiology)
Additional Professor and Epidemiologist
Department of Pediatrics
Sree Avittom Thirunal Hospital
Government Medical College
Thiruvananthapuram, Kerala, India

Indira Agarwal MD FISN
Head
Department of Pediatrics
Christian Medical College and Hospital
Vellore, Tamil Nadu, India

Jyothi Sharma MD DNB IPNA & ISN Fellowship in Pediatric Nephrology
Consultant
Department of Pediatric Nephrology
King Edward Memorial Hospital
Pune, Maharashtra, India

Kanishka Das MS DNB MCh DNB MNAMS
Professor and Head
Department of Pediatric Surgery
St John’s Medical College Hospital
Bengaluru, Karnataka, India

Kishore Phadke MD DABPN (USA)
Director and Head
Division of Pediatric Nephrology
Rainbow Children’s Hospital
Bengaluru, Karnataka, India

Kanishka Das MD DNB MCh DNB MNAMS
Professor and Head
Department of Pediatric Surgery
St John’s Medical College Hospital
Bengaluru, Karnataka, India

Mordi Mourah MBBS MSc PhD MRCPCH (UK)
Consultant Pediatric Nephrologist
Birmingham Children Hospital
Birmingham, UK

N Kamath MD DM (Pediatric Nephrology)
Assistant Professor
Division of Pediatric Nephrology
St John’s Medical College
Bengaluru, Karnataka, India

Priscilla Joshi MD (Radiagnosis)
Professor and Head
Department of Radiodiagnosis
Bharati Vidyapeeth Deemed University Medical College
Pune, Maharashtra, India

Rajiv Sinha MD MNAMS FRCPCH (UK) CCT Paed Nephrology (UK) Fellowship Paed Nephrology (Canada)
Associate Professor and Head
Department of Pediatric Nephrology
Institute of Child Health, Kolkata
Consultant
Department of Pediatric Nephrology
AMRI Hospital and Fortis Hospital
Kolkata, West Bengal, India

Saroj Kumar Patnaik MD DNB (Pediatrics) FIPNA WHO In-Country Training Fellowship in Clinical Endocrinology, Diabetes and Metabolism
Associate Professor and Advisor
Department of Pediatrics
Army Hospital (Research and Referral)
New Delhi, India
Practical Procedures in Pediatric Nephrology

S Gaur MD FPN (St John’s Medical College, Bengaluru)
Consultant
Department of Pediatric Nephrology
Rainbow Children’s Hospital
Bengaluru, Karnataka, India

Shiva Priya Eswaran MD
Department of Microbiology
St Martha’s Hospital
Bengaluru, Karnataka, India

Sidharth Kumar Sethi MD FIPNA FISN FIPNA
Consultant
Department of Pediatric Nephrology
Kidney and Urology Institute
Medanta—The Medicity Hospital
Gurugram, Haryana, India

SK Patnaik
Associate Professor
Department of Pediatrics
Army Hospital (Research and Referral)
New Delhi, India

Smriti Rohatgi MD
Senior Resident
Pediatric Nephrology and Pediatric
Kidney Transplantation
Kidney and Urology Institute
Medanta—The Medicity Hospital
Gurugram, Haryana, India

Subal Kumar Pradhan MD FPN FISP FIPNA
Advanced Fellowship in Pediatric Nephrology
(McGill Health University, Canada)
Assistant Professor
Sardar Vallabhbhai Patel Post Graduate
Institute of Paediatrics
Cuttack, Odisha, India

Subhasis Saha MS MCh (Ped Surgery)
DNB (Ped Surgery)
Consultant
Department of Pediatric Surgery
AMRI Hospital and CMRI Hospital
Kolkata, West Bengal, India

Susan Uthup MD DNB DM (Nephro) DNB (Nephro)
Additional Professor and Head
Department of Pediatric Nephrology
Sree Avittom Thirunal Hospital
Government Medical College
Thiruvananthapuram, Kerala, India

Sushmita Banerjee MBBS DCH MRCP FRCPCH
MSc FIAP
Consultant
Department of Pediatric Nephrology
Calcutta Medical Research Institute and
Institute of Child Health
Kolkata, West Bengal, India

Swasti Chaturvedi MBBS MD FRACP
Consultant
Department of Pediatric Nephrology
Child Health Unit II
Christian Medical College
Vellore, Tamil Nadu, India

Urmila Anandh MBBS MD DNB DM DNB
FRCP (Glasgow)
Senior Consultant and Head
Department of Nephrology
Yashoda Hospitals
Secunderabad, Telangana, India

Valentine Lobo MD DNB
Consultant
Department of Nephrology
King Edward Memorial Hospital
Pune, Maharashtra, India

Varsha Vadera MD
Department of Laboratory Medicine
Kokilaben Dhirubhai Ambani Hospital
Mumbai, Maharashtra, India
The idea of a joint effort in editing of *Practical Procedures in Pediatric Nephrology* was conceived many years ago, for guiding trainees/residents, who sometimes struggle with simple things, such as choosing a proper size of Foley's catheter and putting it in a child.

This book is written as a practical guide to procedures commonly performed by physicians, trainees, junior doctors and nurses in pediatric nephrology practice. Although there are quite a number of procedural books, hardly any have been written keeping the pediatric nephrology community in mind and focusing only on procedures.

In this first edition of *Practical Procedures in Pediatric Nephrology*, we have put together the common bedside procedures and interventions in pediatric nephrology practice. This book covers and describes in detail step-by-step procedures with supporting photographs to aid understanding. We hope that this book will prove useful in this practical field.

We express our thanks to all the contributors for their dedicated professionalism. We would like to thank our teachers, students, trainees, for reminding our educational mission and for their continuous motivation.

We would also like to extend our appreciation to Shri Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President), and all the staff of M/s Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India, for their efforts and inputs enabling timely publication of the book.

Subal Kumar Pradhan
Rajiv Sinha
Contents

1. Setting-up Pediatric Nephrology Services 1
 Kishore Phadke

2. Urinary Bladder Catheterization 4
 Subal Kumar Pradhan, Kanishka Das
 • Indications 4 • Contraindications 5 • Types of
 Bladder Drainage Systems 5 • Catheter Features 6
 • Drainage Bags 8 • Procedures 9 • Catheter Care 10
 • Common Problems with Urethral Catheterization 11
 • Removing a Catheter 11

3. Suprapubic Aspiration for Urine Collection 12
 Jyoti Sharma
 • Indications and Advantages 12 • Contraindications 12
 • Materials Required 12 • Postprocedure Care 13

4. Urinalysis 14
 Urmila Anandh, Varsha Vadera, Shiva Priya Eswaran
 • Methods of Urine Collection 14 • Routine Analysis
 of the Urine 15 • Microscopic Examination of Urine 17
 • Biochemical Analysis of Urine 24 • Urine Culture 25
 • Automated Urinalysis Methodologies 25

5. Hemodialysis Catheter Placement in Children 27
 Valentine Lobo
 • Classification of Catheters 27 • Sizes of Catheters 29
 • Insertion of Dialysis Catheter 30 • Optional 35
 • Care of a Catheter (as per the Indian Society of Nephrology
 Guidelines for Minimum Hemodialysis) 42 • Measures to
 Prevent Access Dysfunction 43 • Preparation of Antibiotic
 Catheter Locks 43 • Treatment of Complications in
 Temporary Access 43 • “Push-Lock” Protocol with
 Urokinase 44 • High Dose Protocol 44

6. Dialyzers, Hemodialysis Circuit including
 Writing Acute Prescription 46
 Rajiv Sinha, Mordi Mourah
 • Conditions where Hemodialysis might be Preferred 46
 • Difficulties in Acute Hemodialysis 46 • Equipment 46
7. Sustained Low-efficiency Dialysis in Children 53
Valentine Lobo
- Definition 53
- Indications for Sustained Low-efficiency Daily Dialysis 53
- Machines for Sustained Low-efficiency Daily Dialysis 55
- Prescription for Sustained Low-efficiency Daily Dialysis 60
- Monitoring of Sustained Low-efficiency Daily Dialysis 61
- Drug Dosing Adjustments during Sustained Low-efficiency Daily Dialysis 61
- Innovations with Sustained Low-efficiency Daily Dialysis 61

8. Plasmapheresis 63
A Saha, A Iyengar
- Indications 63
- Technique 64
- Vascular Access 64
- Filter Selection 64
- Extracorporeal Volume 65
- Anticoagulation 65
- Estimation of Plasma Volume 65
- Kaplan Formula 65
- Replacement Solution 66
- Complications 66
- Strategies to Avoid Complications 66
- Schedule of Plasmapheresis in Few Common Indications 67

9. Acute Peritoneal Dialysis 69
Aditi Sinha
- Indications and Choice of Modality 69
- Catheters for Peritoneal Access 70
- Procedure 71
- Prescription 72
- Monitoring 72
- Complications 73

10. Chronic Peritoneal Dialysis Catheter Placement and Care 75
Rajiv Sinha, Subhasis Saha
- Preparation Prior to Peritoneal Dialysis Catheter Insertion 75
- Catheter Selection 75
- Insertion of Catheter 76
- Post-insertion Peritoneal Dialysis Catheter Care and Exit Site Care 77
- Complications of Peritoneal Dialysis Catheters 78

11. Continuous Renal Replacement Therapy: Basics and Prescriptions 80
Smriti Rohatgi, Sidharth Kumar Sethi
- Principles 80
- Indications 81
- Modes 81
- Prescriptions 83
- Anticoagulation 83
- Complications 84
12. Micturating Cystourethrogram
Subhasis Saha, Rajiv Sinha
- What is it? 86
- Indications 86
- Procedure 86
- Possible Adverse Effects 87
- Contraindications 88

13. Ultrasonography and Magnetic Resonance
Urography of the Kidneys, Ureters, Bladder
Priscilla Joshi, Jyoti Sharma
- Kidneys 91
- Hydronephrosis and Obstruction 91
- Renal Stone Disease 99
- Diffuse Renal Parenchymal Disease in Renal Failure 99
- Echogenic Renal Pyramids 99
- Wilms' Tumor 99
- Renal Cystic Disease 99
- Renal Dysplasia 106
- Pyonephrosis 109
- Renal Vein Thrombosis 111
- Bladder 111
- Ureters 111
- Ureterocele 111

14. Nuclear Medicine Procedures in Pediatric Nephrology
Birendra K Das
- Renal Function Studies 117
- Static Renal Scintigraphy (DMSA Scan) 120
- Diuretic Renography 122
- Vesicoureteric Reflux Study with Voiding Cystourethrogram (Radionuclide Micturating Cystography) 123
- Testicular Scan 130

15. Voiding Diary for Assessment of Voiding Disorders in Children
M Kanitkar, SK Patnaik
- Voiding Diary 134
- Pitfalls 135
- Types of Diaries 135

16. Renal Biopsy
Rajiv Sinha, Mordi Mourah
- Indications for Renal Biopsy 138
- Contraindications (Absolute/Relative) 139
- Prebiopsy Investigations 139
- Sedation/Anesthesia 139
- Procedure 139
- Postbiopsy Observations 140
- Postbiopsy Complications 141

17. Handling of Renal Biopsy Tissue
S Gaur, N Kamath
- Tissue Sampling 143
- Allocation of Biopsy Sample 143
- Handling of Renal Tissue 144
Practical Procedures in Pediatric Nephrology

18. Water Deprivation (and DDAVP) Tests
 Sushmita Banerjee
 • Indication 150 • Prerequisites 150 • Precautions 151
 • Interpretation 151

 Indira Agarwal
 • Measurement 153 • Technique 153
 • Ambulatory Blood Pressure Monitoring 155
 • Definition of Hypertension 156 • White Coat Hypertension 156 • Few Definitions 165

20. Research Methodology and Biostatistics in Pediatric Nephrology
 Susan Uthup, Geetha S
 • Research Protocol 167 • Formulating a Hypothesis 168
 • Testing a Hypothesis 168 • Statistics 173
 • Formulae for Variance 179

21. Drug Therapy in Kidney Disease
 Swasti Chaturvedi
 • General Principles 184 • Pharmacokinetics 187
 • Prescribing for a Patient with Kidney Disease 187
 • Dosing of Individual Drugs 188

Index 203
Figs 4.4A to C: (A) White blood cells (WBCs) in the urine; (B) Eosinophils detected by Hansel's stain; (C) White blood cells

Fig. 4.12C: Finely granular cast
INTRODUCTION
Urinalysis is the oldest of all clinical laboratory examinations. It was practiced centuries ago by the “Pisse prophet” who claimed to divine the mysteries of disease by examining the yellow liquid. With the application of proper care and attention, it is one of the most valuable of all clinical laboratory examinations and provides a large amount of medical information in a cost-efficient way. Traditionally, urine examination is divided into a routine examination and a microscopic examination. Besides, urine is also subjected to various biochemical examinations and is often cultured to obtain the type of organisms responsible for urinary tract infections.

METHODS OF URINE COLLECTION
- Random collection taken at any time of the day with no precautions regarding contamination. The sample may be dilute, isotonic, or hypertonic and may contain white cells, bacteria, and squamous epithelium as contaminants. In females, the specimen may contain vaginal contaminants such as trichomonads, yeast; and during menses red cells.
- Early morning collection of the sample before ingestion of any fluid. This is usually hypertonic and reflects the ability of the kidney to concentrate urine during dehydration, which occurs overnight. If all fluid ingestion has been avoided since 6 pm, the previous day, the specific gravity usually exceeds 1.022 in healthy individuals.
- Clean-catch, midstream urine specimen collected after cleansing the external urethral meatus. A cotton sponge soaked with benzalkonium hydrochloride is useful and non-irritating for this purpose. A midstream urine is one in which the first half of the bladder urine is discarded and the collection vessel is introduced into the urinary stream to catch the last half. The first half of the stream serves to flush contaminating cells and microbes from the outer urethra prior to collection. This sounds easy, but it is not (try it yourself before criticizing the patient).
Catheterization of the bladder through the urethra for urine collection is carried out only in special circumstances, i.e. in a comatose or confused patient. This procedure risks introducing infection and traumatizing the urethra and bladder, thus producing iatrogenic infection or hematuria.

Suprapubic transabdominal needle aspiration of the bladder. When done under ideal conditions, this provides the purest sampling of bladder urine. This is a good method for infants and small children.

Another important factor is the interval of time which elapses from collection to examination in the laboratory. Changes which occur with time after collection include: (1) decreased clarity due to crystallization of solutes, (2) rising pH, (3) loss of ketone bodies, (4) loss of bilirubin, (5) dissolution of cells and casts, and (6) overgrowth of contaminating microorganisms. Generally, urinalysis may not reflect the findings of absolutely fresh urine if the sample is >1 hour old. Therefore, get the urine to the laboratory as quickly as possible.

For culture prompt fresh urine or refrigerate at 4° can be used if loop method of colony count is to be done. For dipstick method, a fresh urine sample within 2 hours should be examined or the sample should be refrigerated immediately for 24 hours.

ROUTINE ANALYSIS OF THE URINE

Urine is physically examined for its clarity and color. Turbidity of the urine is caused by excessive cellular material or protein in the urine. It may also develop from precipitation of its salts and crystals. The chemical analysis of the urine is usually done by the dipstick (Figs 4.1 and 4.2).

The chemical constituents of the urine analyzed by the dipstick are:

pH

The glomerular filtrate is usually acidified by renal tubules from a pH of 7.4 to about 6 in the final urine. However, depending on the acid-base status, urinary pH may range from as low as 4.5 to as high as 8.0. Failure to acidify the urine in a child with normal renal functions is seen in renal tubular acidosis.

Specific Gravity

Specific gravity between 1.002 and 1.035 on a random sample should be considered normal, if kidney function is normal. A fixed specific gravity of 1.010 is a marker of lack of concentrating ability and is called isosthenuria.

Any urine having a specific gravity over 1.035 is either contaminated, contains very high levels of glucose, or the patient may have recently received high-density radiopaque dyes intravenously for radiographic studies or low molecular weight dextran solutions.

Protein

Dipstick screening for protein is done on whole urine, but semi-quantitative tests for urine protein should be performed on the supernatant of centrifuged
False-positive results occur in alkaline urine (pH more than 7.5), when the dipstick is immersed too long, with highly concentrated urine, with gross hematuria, in the presence of penicillin, sulfonamides or tolbutamide, and with pus, semen or vaginal secretions.
False-negative results occur with dilute urine (specific gravity more than 1.015) and when the urinary proteins are nonalbumin or of low molecular weight.

The results are graded as negative (<10 mg/dL), trace (10–20 mg/dL), 1+(30 mg/dL), 2+(100 mg/dL), 3+(300 mg/dL) or 4+(1,000/ per dL).

Dipsticks also detect microalbumin by an immunological test strip called Micral test.

Glucose

Dipsticks employing the glucose oxidase reaction for screening are specific for glucose but can miss other reducing sugars such as galactose and fructose. For this reason, most newborn and infant urines are routinely screened for reducing sugars by methods other than glucose oxidase (such as the Clinitest, a modified Benedict’s copper reduction test).

Ketones

Ketones (acetone, acetoacetic acid, beta-hydroxybutyric acid) result from either diabetic ketosis or some form of caloric deprivation (starvation) and are easily detected using dipsticks. Acetoacetic acid, an intermediate product of fat metabolism, is excreted in the urine and gets slowly converted to acetone if the urine is left at room temperature.

Nitrite

A positive nitrite test indicates that bacteria (Gram negative) may be present in significant numbers in urine. Enterococcus, Staphylococcus and Pseudomonas are partial nitrite formers. The detection rate increases if the urine is held in the bladder for at least 4–6 hours. Thus, a first void sample is used. High doses of ascorbic acid produces false-negative results.

Leukocyte Esterase

A positive leukocyte esterase test results from the presence of white blood cells either as whole cells or as lysed cells. A negative leukocyte esterase test means that an infection is unlikely.

MICROSCOPIC EXAMINATION OF URINE

Microscopic examination of the urine consists of examining the urine for the presence of cells, casts, crystals, and bacteria. Urine microscopy should be performed on any patient who has persistent hematuria or proteinuria and may be useful if the urine dipstick is suggestive of urinary tract infection (UTI).

Procedure

Microscopic examination is to be done if possible in 1–2 hours; and if it is not done within 4 hours, it is preferable to refrigerate the urine at 2–8 ° centigrade.
A sample of well-mixed urine (usually 10–15 mL) is centrifuged in a test tube at relatively low speed (about 2–3,000 rpm) for 5–10 minutes until a moderately cohesive button is produced at the bottom of the tube. The supernatant is decanted and a volume of 0.2–0.5 mL is left inside the tube. The sediment is examined on a clean slide as a wet mount. In infants and neonates, the ideal sample is a suprapubic aspirate. If not feasible, a catheter/sterile collection may be used to collect the urine.

The sediment is first examined under low power to detect most crystals, casts, squamous cells, and other large objects. The number of casts seen is usually reported as the number of each type found per low-power field (LPF). Since the number of elements found in each field may vary considerably from one field to another, several fields are averaged (5–10). Next, examination is carried out at high power to identify crystals, cells, and bacteria. The various types of cells are usually described as the number of each type found per average high-power field (HPF).

Microscopic Elements of Urine

Red Blood Cells (Figs 4.3A and B)

Usually, two or less red blood cells (RBCs) per high-power field are considered normal. RBCs may appear normally shaped, swollen by dilute urine (in fact, only cell ghosts and free hemoglobin may remain), or crenated by concentrated urine. Both swollen, partly hemolyzed RBCs and crenated RBCs are, sometimes, difficult to distinguish from WBCs in the urine. In addition, red cell ghosts may simulate yeast. When a patient has persistent urine dipstick positive for blood, the presence of increased RBCs should be confirmed by microscopy. In dilute urine of normal color, a heme-positive dipstick and little or no RBCs seen on microscopic examination is more likely due to lysis of RBCs. In a patient who has urine that appears grossly bloody, however, a strongly positive dipstick with few RBCs visualized on microscopic examination is suggestive of rhabdomyolysis or intravascular hemolysis. Urine microscopy is useful in determining the etiology of hematuria. The presence of dysmorphic RBCs...
(using phase-contrast microscopy) and RBC casts suggests a renal source of the hematuria, most likely glomerular disease. Normal-appearing RBCs and the lack of casts suggest lower urinary tract bleeding.

White Blood Cells (Figs 4.4A to C)

Greater than five white blood cells (WBCs) per HPF are generally considered abnormal. Pyuria usually signifies UTI, although it is not specific for UTI. Other conditions that can result in pyuria, include fever, glomerulonephritis, and other inflammatory processes, whether in the kidney (interstitial nephritis) or pelvic region, e.g. appendicitis. The presence of pyuria does not add to and may not be as good a screen for UTI as leukocyte esterase and nitrites from the urine dipstick. The urine should be cultured to confirm UTI. White blood cells from the vagina can contaminate urine specimens. The presence of eosinophils in the urine is suggestive of allergic interstitial nephritis. Wright, Giemsa and Hansel stains are used to detect eosinophiluria. Hansel stain is most effective. Prolonged standing of hypotonic urine results in lysis of white blood cells.

Epithelial

Renal tubular epithelial cells, usually larger than granulocytes, contain a large round or oval nucleus and normally slough into the urine in small numbers.
cells (Fig. 4.5). However, with nephrotic syndrome and in conditions leading to tubular degeneration, the numbers increase.

Transitional epithelial cells from the renal pelvis, ureter, or bladder have more regular cell borders, larger nuclei, and smaller overall size than squamous epithelium (Fig. 4.6).

Squamous epithelial cells from the skin surface or from the outer urethra can appear in urine (Fig. 4.7).
Bacteria
The presence of bacteria in an asymptomatic patient is most likely due to contamination. Well-mixed uncentrifuged urine may be examined with Gram's stain. If bacteria are identified under oil-immersion lens, it corresponds with significant bacteriuria (>100,000 organisms/mL).

Yeast (Fig. 4.8)
Yeast cells may be contaminants or represent a true yeast infection. They are often difficult to distinguish from red cells and amorphous crystals but are distinguished by their tendency to bud. Most often they are Candida, which may colonize bladder, urethra, or vagina.

Casts
Casts are formed as translucent colorless gels in the lumen of distal convoluted tubules and collecting ducts and consist of an organic matrix composed of Tamm–Horsfall protein with or without additional elements. There are many different types of urinary casts that may be observed on urine microscopy.

Hyaline casts are composed primarily of secreted by the tubule cells. The Tamm–Horsfall protein secretion (green dots) is illustrated in the Figure 4.9, which forms a hyaline cast in the collecting duct (Fig. 4.10).

Hyaline casts are the most common and can be seen in normal individuals. They may be increased with concentrated urine, diuretics, renal disease, fever, and exercise.

Cellular casts are of greater significance. Cellular casts can dissolve within 30 minutes in acidic urine and within 10 minutes in alkaline dilute urine and can be missed if the microscopic examination is not performed soon after voiding. Cellular casts include RBC casts (seen with glomerulonephritis), WBC casts (Fig. 4.11) (seen with pyelonephritis), renal tubular epithelial cell casts (viral illnesses, ATN, heavy metal poisoning, acute graft rejection), mixed cellular casts and broad casts.
Inclusion casts include granular, fatty, hemosiderin and crystal casts. Pigmented casts include hemoglobin, myoglobin and bilirubin casts.

When cellular casts remain in the nephron for some time before they are flushed into the bladder, the cells may degenerate to become a coarsely granular cast, later a finely granular cast, and ultimately, a waxy cast. Broad casts are believed to emanate from damaged and dilated tubules and are, therefore, seen in end-stage chronic renal disease (Figs 4.12A to C).
The so-called telescoped urinary sediment is one in which red cells, white cells, oval fat bodies, and all types of casts are found in more or less equal profusion. The conditions which may lead to telescoped sediment are: (1) lupus nephritis, (2) malignant hypertension, (3) diabetic glomerulosclerosis, and (4) rapidly progressive glomerulonephritis.

Crystals

It is common to find crystals on microscopic examination of the urine. Crystal formation depends on a number of factors, and the presence of crystals may or may not be pathologic (Fig. 4.13).
Common crystals seen even in healthy patients include calcium oxalate, triple phosphate crystals and amorphous phosphates (Fig. 4.13).

Very uncommon crystals include: cystine, tyrosine and leucine crystals.

BIOCHEMICAL ANALYSIS OF URINE

Chemical analysis of the urine is usually done for further confirmation of results obtained by dipstick.

The most accurate quantitative estimation of protein is by the 24-hour collection which may be cumbersome for children. Also the hour-to-hour inconsistency of protein excretion particularly in daytime has questioned the rationale of using a timed urine sample. If a timed urine sample for quantification is considered, then a 12-hour overnight sample appears more accurate. This collection also takes care of the presence of orthostatic proteinuria in children/adults. Hence, over the years, spot urine collections (first morning/early morning) are becoming more acceptable. Quantification is calculated by using the protein-creatinine ratio.

The detection of Bence-Jones protein involves the heat precipitation test which is based on demonstrating a protein, which precipitates at 40–60°C and re-dissolves on cooling. It lacks specificity and sensitivity and needs to be confirmed with electrophoretic tests.

Testing for microalbumin is done by various methods (Table 4.1) and should be used for diabetic children and not the routine protein estimations.

Bilirubin is chemically checked by Fouchet’s test and urobilinogen by Ehrlich’s test. Presence of hemoglobin in urine is tested by the Guaiac test.

Table 4.1: Methods of estimating urinary albumin

<table>
<thead>
<tr>
<th>Precipitation</th>
<th>Boiling, sulphosalicylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye binding</td>
<td>Biuret, tetrabromophenol, albumin blue 580</td>
</tr>
<tr>
<td>Antibody binding</td>
<td>Test strips, nephelometry, radioimmunoassay</td>
</tr>
<tr>
<td>Molecular size/shape</td>
<td>HPLC, spectrophotometry</td>
</tr>
</tbody>
</table>

Fig. 4.13: Commonly seen crystals in patient urine
Neonatal screening for inherited aminoaciduria is done using urine which is collected at least 48 hours after birth so that a sufficient build up of the amino acid occurs after a diet of proteins. The urine needs to be free of drugs, e.g. antibiotics or other endogenous substances, which interfere with the testing. Antibiotics can be inactivated by autoclaving the sample. This, however, does not destroy the amino acid to be tested. In premature all positive results must be viewed with caution as the mild elevation can occur due to relative immaturity of the liver.

URINE CULTURE

Urine is often cultured with the midstream clean catch sample. It is necessary to estimate the approximate number of bacteria in urine so as to determine significant bacteriuria. This is done by using a calibrated loop which has a known quantity of urine (usually 0.002 mL or 1/500 mL) and this amount is placed on a quarter plate of cystine lactose electrolyte deficient (CLED) agar. As each colony is derived from a single bacterium, if twenty colonies are formed after 48 hours of incubation it means that the bacterial count of the sample is 10,000 colonies/per mL $(20 \times 500/mL)$. A count of 100,000 is considered significant. In suprapubic aspirates from children, a count of 1000 may represent UTI. The morphological appearance of common bacteriae is shown in *Table 4.2*.

AUTOMATED URINALYSIS METHODOLOGIES

Two technologies that are currently used in urine particle recognition systems are flow imaging and flow cytometry. Both systems force the particles to flow in a single plane.

Flow Imaging Technology

With flow imaging, the particles pass through a microscope, are photographed, and then analyzed and classified by computer as to size, shape, and texture. Particle concentration is then calculated based on the number of images and the volume that is scanned.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>Yellow opaque colonies with deeper center</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>Large mucoid yellow/yellow white colonies</td>
</tr>
<tr>
<td>Proteus</td>
<td>Translucent blue-grey colonies</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>Green colonies</td>
</tr>
<tr>
<td>E. fecalis</td>
<td>Small yellow colonies</td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>Deep yellow colonies of uniform color</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>Yellow to white colonies</td>
</tr>
</tbody>
</table>
Flow Cytometry Technology

With the flow cytometry method, light scatter and the height and width of fluorescent signals are measured. The data is displayed in scatterplots and presented to the operator for further particle classification, if necessary.

Automated instruments classify and quantitate microscopic elements within the known parameters of the systems. When elements are unknown or outside of the defined parameters, operator intervention is needed. Non-squamous epithelial cells require operator review with some systems.

Manual microscopy is always needed to identify and classify cellular casts. If trichomonas vaginalis is suspected, the sediment must be examined microscopically so that flagella and motility can be confirmed.

SUMMARY

The evaluation of the urine by physical, microbiologic and biochemical examination reveals a wealth of information regarding the clinical status of the child. The oldest laboratory investigation still is the most cost effective investigation.

BIBLIOGRAPHY

Figs 4.4A to C: (A) White blood cells (WBCs) in the urine; (B) Eosinophils detected by Hansel's stain; (C) White blood cells

Fig. 4.12C: Finely granular cast