Manual of Histological Techniques

Salient Features

- Short and concise manual of different histological techniques and histological stains
- Apart from conventional histological techniques, this manual also includes modern histological techniques such as immunohistochemistry, cell block, immunofluorescence, in situ hybridization, fluorescent in situ hybridization (FISH) and molecular diagnostic procedures
- Written in a simple and lucid language for better understanding of the students
- Useful for students of MD (Pathology), DCP (Diploma in Clinical Pathology), BSc. BMLT and DMLT technicians as well as specialist/consultants, technicians and others working in histological laboratories.

Santosh Kumar Mondal passed MBBS from North Bengal Medical College, West Bengal, India, in 1994 and MD in Pathology from Institute of Postgraduate Medical Education and Research (ISKM Hospital), West Bengal, India, in 2000. He joined West Bengal Medical Education Service in 2003 as Demonstrator in Pathology and worked in different capacities since then. Presently, he is Associate Professor, Department of Pathology, Bankura Sammilani Medical College, West Bengal since January, 2011. He got post MD training on Oncopathology at Tata Memorial Hospital, Mumbai, Maharashtra, India, for 6 months. He acted as both external and internal examiner for different examinations such as MBBS; DMLT, etc. He has published 65 articles in different indexed national and international journals. Besides, he has been selected as reviewer of various reputed national and international journals such as Diagnostic Cytopathology.
Manual of
Histological Techniques

Santosh Kumar Mondal MB (Pathology)
Associate Professor
Department of Pathology
Bankura Sammilani Medical College
Bankura, West Bengal, India
Ex-Associate Professor
Department of Pathology
Medical College
Kolkata, West Bengal, India

The Health Sciences Publisher
New Delhi | London | Philadelphia | Panama
Dedicated to

My parents,
Mr Nitai Chandra Mondal
and
Ms Jyotsna Mondal
The relentless progresses of medical technology have brought into its wake novel methods of investigations and treatments, rendering many older methods obsolete. Pathological investigations remain cornerstone of medical diagnosis. Histotechnology plays a pivotal role to make a diagnosis of surgical specimens.

With the advent of newer diagnostic techniques like molecular diagnostic methods, a quick but very reliable diagnosis is possible, even from small amount of tissue. In this manual, I have included the molecular techniques, immunohistochemistry, cell blocks, and immunofluorescence along with the conventional techniques. For students’ easy understanding; many figures, charts, diagrams and tables have been included. At the same time, the volume of the book has been restricted; so that students do not become overburdened during preparation of examination. Specialists and consultants who are working in a surgical pathology laboratory will also find it useful.

I am indebted to my parents Mr Nitai Chandra Mondal and Smt Jyotsna Mondal for their value-based guidance, blessings and constant support that I have received throughout my life. I thank my son Soumyadeep, brother Monotosh and wife Shampa, for their continuous encouragement during preparation of this manual. I also thank postgraduates of pathology (MD, PGT), especially Dr Saikat Mandal and Dr Debasish Bhattacharya, for their help during preparation of this book. I am thankful to my friend Dr Sanjib Pattari, for supplying a few special stained slides.

Despite my best efforts, some mistakes might have crept in. So, I request all readers to kindly bring it to my notice. Your constructive criticism, appreciation and suggestions are most welcome.

Santosh Kumar Mondal
E-mail: dr_santoshkumar@hotmail.com
Contents

1. Tissue Fixation and Fixatives 1
 Classification of Fixatives 1
 Reactions of Fixatives with Proteins 2
 General Principles of Fixation 2
 Routine Formalin Fixatives 2
 Removal of Formalin Pigment 3
 Protein Denaturing Agents as Fixative 3
 Mercury Fixatives 4
 Picric Acid Fixatives 4
 Fixation of Tissues for Electron Microscopy 5
 Factors Involved in Tissue Fixation 5
 Secondary Fixation (Post-fixation/Post-chromatin) 5

2. Tissue Processing, Microtomy and Paraffin Sections 6
 Tissue Processing, Microtomy and Paraffin Sections 6
 Dehydration 6
 Clearing 6
 Impregnation 7
 Embedding 7
 Automated Tissue Processing 9
 Microtomy 10
 Rotary Microtome 10
 Microtome Knives 11
 Knife Materials 12
 Knife Sharpening 13
 Paraffin Section Cutting 14
 Section Adhesives 15
 Cutting Hard Tissues 16
 Blocking Out Molds (Shapes, Cups) 15
 Mounting of Sections 17

3. Cryostat and Frozen Sections 18
 Advantage of Frozen and Cryostat Sections 18
 The Cryostat (Machine) 18
 Freeze Drying 20

4. Staining of Tissues—Basic Concept 22
 Factors Contributing to Affinities Between Dye and Tissues 22
 Polychromasia 24
 Theory of Staining 24
 Stains and Dyes 24

5. Routine Hematoxylin and Eosin Stain 26
 Principle of Alum Hematoxylin Staining 26

6. Carbohydrates 32
 Fixative for Mucins 33
 Choice of Staining Method 34
 Metachromasia and Mucin 34
 Glycogen 35
 Use of Enzymes 36
 Periodic Acid-Schiff Reaction and Stain 36
 Southgate’s Mucicarmine Method 39

7. Lipids 41
 Classification of Lipids 41
 Classification of Lipids Based on Polar and Nonpolar Groups 42
 Fixation of Lipids 42
 Identification of Lipids 42
 Control Sections 43

8. Proteins and Nucleic Acid Staining 48
 Histophysical Methods 48
 Amino Acid Histochmical Methods 48
 Enzyme Histochmical Methods 50
 Immunohistochmical Methods 50
 Fluorescent Methods 50
 Nucleic Acids 50
 Deoxyribonucleic Acid 50
 Ribonucleic Acid 50
 RNA Staining 52

9. Connective Tissue Staining 55
 Cellular Component 55
 Fibroblasts 55
 Macrophages or Histiocytes 55
 Plasma Cells 56
 Mast Cell 56
 Pigment Cells 56
 Reticular Cells 56
 Fat Cells 56
 Intercellular Substance 56
 Amorphous Element 56
10. Pigments and Minerals

- Hemoglobin 63
- Hemosiderin 63
- Bile Pigments 64
- Porphyrin Pigments 65
- Melanin Pigments 65
- Lipofuscin 65
- Dubin-Johnson Pigments 65
- Pseudomelanosis (Melanosis Coli) 65
- Hamazaki-Wesenberg Bodies 65
- Iron 65
- Calcium 66
- Copper 66
- Lead 66
- Uric Acid and Urates 66
- Carbon 66
- Silica 66
- Asbestos 66
- Silver 66
- Tattoo Pigment 67
- Formalin Pigments 67
- Mercury Pigments 67
- Chronic Oxide 67
- Malarial Pigment (Hemozoin Pigment) 67
- Schistosome Pigment 67
- Perl's Prussian Blue Reaction (for Ferric Iron) 67
- Tirmann-Schmelzer's Turnbull Blue Technique (for Ferrous and Ferric Iron) 68
- Hukill and Putt's Method (for Ferrous and Ferric Iron) 68
- Modified Fouchet Technique for Bile Pigments 68
- Gemelin Technique for Bile Pigments 69
- Masson-Fontana Method for Melanin 69
- Schmorl's Reaction for Melanin 70
- Long Ziehl-Neelsen Method for Lipofuscin 70
- Von Kossa's Technique for Calcium 70
- Alizarin Red S Method for Calcium 71
- Modified Rhodamine Technique for Copper 71
- Mallory and Parker's Method for Lead and Copper 71

11. Bone and Decalcification

- Bone Techniques 73
- Specimen and Biopsy 73
- Fixatives for Bone Specimens 73
- Saws in Bone Cutting 73
- Decalcification 74
- Weak Acids (Formic, Picric, Acetic Acid) 75
- Chelating Agents (EDTA) 76
- Ion Exchange Resins 76
- Electrophoretic Method of Decalcification 76
- Surface Decalcification 77
- Factors of Decalcification Process 78
- Plastic or Synthetic Resin Embedding 78
- Methyl Methacrylate Embedding Procedure 78

12. Nervous System

- Neurons 80
- Glial Cells 80
- Meninges 80
- Myelin 80
- Nissl Substance (Tigroid or Chromidial Substances) 81
- Cresyl Fast Violet Stain (Nissl Substance) 81
- Luxol Fast Blue – Cresyl Violet for Myelin 81
- Page's Solochrome Cyanine Technique (for Myelin) 82
- Gees and Marsland's Modification of Bielschowsky's Method 82
- Eager's Method for Degenerating Axons 83
- Modified Bielschowsky Method (for Neuritibrillary Tangles and Plaques) 83

13. Some Special Stains

- Amyloid 85
- Staining for Amyloid 85
- What is Birefringence? 85
- Alkaline Congo Red Technique 86
- Thioflavin T Method 87
- Lendrum's Technique (Metachromatic Stain) 87
- Gram-Twort Stain 87
- Ziehl-Neelsen Method 88
- Modified Wade-Fite Method for M. leprae and Nocardia 88
- Gimenez Method for Helicobacter pylori 89
- Giemsa Stain for Parasites 90
- Pilocarpine-Tartrazine Technique 90

14. Enzyme Histochemistry and Histochemical Stains

- Enzymes 92
- Histochemistry 92
- Enzyme Histochemistry 92
- Principles of Enzyme Histochemistry 92
- Classical Histochemical Reactions 92
- Enzyme Types 93
- Types of Histochemical Reaction 93
- Skeletal Muscle Biopsy 94
- Adenosine Triphosphatase (ATPase) 95
- Cytochrome Oxidase 95
- Phosphorylase 96
- Detection of Nerves and Ganglia in Suspected Hirschsprung's Disease 96
- Agyrophil Staining 97
- Argentaffin Staining (Masson-Fontana Method) 97

15. Immunohistochemistry

- Definition 99
- Antigen 99
- Epitopes 99
- Antibody 99
- Short History 99
- Different Techniques 99
- Labeled Direct Method (Traditional Method) 100
- Unlabeled Enzyme-Anti-Enzyme Complex Method 101
- Technical Aspects of Immunohistochemistry 102
- Cytological Preparations 103
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive for Histologic Sections</td>
<td>103</td>
</tr>
<tr>
<td>Antigen Retrieval Techniques</td>
<td>103</td>
</tr>
<tr>
<td>Heat Mediated Antigen Retrieval</td>
<td>104</td>
</tr>
<tr>
<td>Preparation of Paraffin Wax Sections for IHC</td>
<td>105</td>
</tr>
<tr>
<td>IHC Staining Protocol</td>
<td>106</td>
</tr>
<tr>
<td>Multiple Staining</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Cell Block and Diagnostic Cytopathology</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Cell Block Using Agar</td>
<td>115</td>
</tr>
<tr>
<td>Preparation of Cell Block Using Thrombin and Plasma</td>
<td>115</td>
</tr>
<tr>
<td>Points to Remember</td>
<td>115</td>
</tr>
<tr>
<td>Use of Cell Block</td>
<td>116</td>
</tr>
<tr>
<td>Normal Saline Rinse Method</td>
<td>116</td>
</tr>
<tr>
<td>Fifty Percent Ethanol Rinse Method</td>
<td>116</td>
</tr>
<tr>
<td>Tissue Coagulum Clot Method</td>
<td>116</td>
</tr>
<tr>
<td>Cellent™ Automated Cell Block System</td>
<td>117</td>
</tr>
<tr>
<td>Shandon Cytoblock Method</td>
<td>117</td>
</tr>
<tr>
<td>Fixatives Used in CBs</td>
<td>117</td>
</tr>
<tr>
<td>Embedding and Paraffin Sections</td>
<td>120</td>
</tr>
<tr>
<td>Short Schedule for Automatic Tissue Processing for Cell Blocks (13 Hours)</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Plastic/Resin Embedding Media</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of Plastic Media</td>
<td>122</td>
</tr>
<tr>
<td>Epoxy Resins/Plastics</td>
<td>122</td>
</tr>
<tr>
<td>Acrylic Resins/Plastics</td>
<td>122</td>
</tr>
<tr>
<td>Application of Acrylic Plastics</td>
<td>123</td>
</tr>
<tr>
<td>Polyester Plastics</td>
<td>123</td>
</tr>
<tr>
<td>Processing and Embedding for Methyl Methacrylate</td>
<td>123</td>
</tr>
<tr>
<td>Processing and Embedding for LR White</td>
<td>124</td>
</tr>
<tr>
<td>Processing and Embedding for Glycol Methacrylate</td>
<td>124</td>
</tr>
<tr>
<td>Sectioning Cutting of Acrylic Resin/Plastic Embedded Specimens</td>
<td>124</td>
</tr>
<tr>
<td>Staining of Acrylic Resin/Plastic Sections</td>
<td>124</td>
</tr>
<tr>
<td>Basic Techniques for Embedding and Sectioning Plastics/Resins</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Electron Microscopy</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Electron Microscopes</td>
<td>126</td>
</tr>
<tr>
<td>Renal Diseases</td>
<td>127</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>128</td>
</tr>
<tr>
<td>Metabolic Diseases</td>
<td>128</td>
</tr>
<tr>
<td>Infectious Disease</td>
<td>128</td>
</tr>
<tr>
<td>Genetic Diseases</td>
<td>128</td>
</tr>
<tr>
<td>Skeletal Muscle Biopsy</td>
<td>129</td>
</tr>
<tr>
<td>Peripheral Nerve Biopsy</td>
<td>129</td>
</tr>
<tr>
<td>Diseases of Obscure Natures</td>
<td>129</td>
</tr>
<tr>
<td>Limitations of Electron Microscopy</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Immunofluorescence Techniques</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>130</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>130</td>
</tr>
<tr>
<td>Brief History</td>
<td>130</td>
</tr>
<tr>
<td>Technical Aspects</td>
<td>130</td>
</tr>
<tr>
<td>Procedure for Frozen Tissue Sections</td>
<td>131</td>
</tr>
<tr>
<td>Direct Immunofluorescence Staining Method</td>
<td>131</td>
</tr>
<tr>
<td>Indirect Immunofluorescence Staining Method</td>
<td>131</td>
</tr>
<tr>
<td>Fluorescent Microscope</td>
<td>131</td>
</tr>
<tr>
<td>Diagnostic Use of Immunofluorescence</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Museum Technique</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reception of the Specimen</td>
<td>134</td>
</tr>
<tr>
<td>Preparation of the Specimen</td>
<td>134</td>
</tr>
<tr>
<td>Fixation in Fixative</td>
<td>135</td>
</tr>
<tr>
<td>Restoration of Color</td>
<td>135</td>
</tr>
<tr>
<td>Preservation in Mounting Fluid</td>
<td>136</td>
</tr>
<tr>
<td>Presentation of the Specimen</td>
<td>137</td>
</tr>
<tr>
<td>Preparation of Museum Jars or Boxes (Perspex)</td>
<td>137</td>
</tr>
<tr>
<td>Mounting in Perspex Jars or Routine Mounting</td>
<td>137</td>
</tr>
<tr>
<td>Mounting in Glass Jars</td>
<td>138</td>
</tr>
<tr>
<td>Gelatin Embedding</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. Light Microscopy</th>
<th>139</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Microscope</td>
<td>140</td>
</tr>
<tr>
<td>Component of a Light Microscope</td>
<td>140</td>
</tr>
<tr>
<td>Light Source</td>
<td>141</td>
</tr>
<tr>
<td>Routine Care and Maintenance</td>
<td>141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Molecular Diagnostic Techniques and its Applications</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen Requirements</td>
<td>143</td>
</tr>
<tr>
<td>DNA Analysis</td>
<td>144</td>
</tr>
<tr>
<td>RNA Analysis</td>
<td>145</td>
</tr>
<tr>
<td>Protein Analysis</td>
<td>145</td>
</tr>
<tr>
<td>Interphase Cytogenetics</td>
<td>147</td>
</tr>
<tr>
<td>Microdissection</td>
<td>147</td>
</tr>
<tr>
<td>Polymerase Chain Reaction</td>
<td>148</td>
</tr>
<tr>
<td>Applications of PCR</td>
<td>153</td>
</tr>
<tr>
<td>DNA Microarrays</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. In Situ Hybridization and Fluorescent In Situ Hybridization</th>
<th>156</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Hybridization</td>
<td>156</td>
</tr>
<tr>
<td>Methods of In Situ Hybridization</td>
<td>156</td>
</tr>
<tr>
<td>In Situ Hybridization (ISH) Protocol</td>
<td>158</td>
</tr>
<tr>
<td>Result</td>
<td>158</td>
</tr>
<tr>
<td>Applications of ISH</td>
<td>158</td>
</tr>
<tr>
<td>Fluorescent In Situ Hybridization</td>
<td>158</td>
</tr>
<tr>
<td>Basic Steps of FISH</td>
<td>159</td>
</tr>
<tr>
<td>Probes</td>
<td>159</td>
</tr>
<tr>
<td>Labeling in FISH</td>
<td>159</td>
</tr>
<tr>
<td>Tissue Types</td>
<td>159</td>
</tr>
<tr>
<td>FISH Procedures (General/Common Things)</td>
<td>160</td>
</tr>
<tr>
<td>Reagents</td>
<td>160</td>
</tr>
<tr>
<td>Metaphase Scoring Criteria</td>
<td>162</td>
</tr>
<tr>
<td>Single Day FISH Protocol (Sigma–Aldrich)</td>
<td>162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td>169</td>
</tr>
<tr>
<td>Index</td>
<td>171</td>
</tr>
</tbody>
</table>
Figs 2A and B: PAS positive materials (mucin) are stained as magenta/bright red: (A) PAS: Appendix, low power; (B) PAS: Appendix, high power (Chapter 6)

Figs 3A and B: Alcian blue, intestine, low and high power. Alcian blue stains acid mucins as blue (Chapter 6)
INTRODUCTION

Carbohydrates are compounds of carbon, hydrogen and oxygen, the latter two usually in the proportion of water. The most important carbohydrates are sugar, starches, cellulose and gums. These are classified as mono-, di-, tri- and heterosaccharide. The word “carbohydrate” actually is descriptive of the 1:1 ratio of carbon molecules to water (hydrate).

In order to understand different types of carbohydrates and their location in different parts of the body, let us know the classification of carbohydrates based on chemical nature:

- **Group I: Polysaccharides**, e.g. glycogen.
- **Group II: Mucopolysaccharides**:
 - Simple or sulfate free, e.g. hyaluronic acid in synovial fluid or umbilical cord.
 - Complex or sulfate containing, e.g. chondroitin sulfate, mucosulfate of gastric mucin, corpora amylacea, and mast cell granules.
- **Group III: Mucoproteins and glycoproteins**: These are protein-carbohydrate compounds having high protein or peptide within it.
 - Mucoprotein without sialic acid, e.g. serum mucoprotein, submaxillary and Brunner’s gland mucin, beta granules of anterior pituitary.
 - Mucoprotein containing sialic acid (N-acetylneuraminic acid), e.g. sialomucin or carboxylated mucin.
- **Group IV: Glycolipids**: These are carbohydrate lipid compounds and have fat residue within it, e.g. cerebrosides.
- **Group V: Phosphatides or Phospholipids**, e.g. lecithin, cephalin and sphingomyelin.

Mucins are hexosamine containing polysaccharides covalently bound to varying amounts of proteins. The original term of "mucin" was coined by an American worker named Carpenter in 1846. Subsequently different names of mucin follow, i.e. mucosubstances, mucopolysaccharides and glycosaminoglycans. Later on, Reid and Clamp in 1978 suggested a general term “glycoconjugates”, which again subdivided into proteoglycans or glycoaminoglycans and glycoproteins. To avoid confusion of terminologies we prefer to use the term mucin. The synthesis of mucin starts in the rough endoplasmic reticulum in the synthesizing cells and complete in the Golgi apparatus. For staining different types of staining techniques are employed. These are PAS (periodic acid-Schiff), Alcian blue, mucicarmine, aldehyde fuchsin, high iron diamine, etc.

Mucins are high molecular weight glycoproteins and are commonly found in epithelium of gastrointestinal tract, respiratory tract and reproductive tract. Mucins are composed of a central protein core with multiple chains of carbohydrates (polysaccharide) attached. Carbohydrate component of mucin accounts for 60–80% of total molecular weight. The protein core of mucin contains high contents of two amino acids—serine and threonine.

But there are other glycoproteins which share structural similarities with mucin (which is a high molecular weight glycoprotein) and are often confused with mucins. Proteoglycans are high molecular weight glycoconjugate complexes. These are found in abundance in connective tissues and in extracellular matrix. In the past proteoglycans were frequently referred to as connective tissue mucins. However,
protein core of proteoglycon is different and distinct from that of mucins.

- Histochemical reactivity is largely dependent upon the carbohydrate component of mucin. Some carbohydrate molecules do not carry electric charge as they do not have ionizable groups under normal conditions (e.g. glucose, mannose and galactose). In contrast to these monosaccharides, other monosaccharides may contain acidic groups or ions such as carboxyl (COOH) and sulfonic (SO₃⁻) groups which are capable of ionization to confer an overall negative charge on the molecule. The carboxylated monosaccharide N-acetyneuraminic acid is commonly known as sialic acid. The presence of these ionizable groups determine the chemical reaction with dyes of the stains.

- From histochemical perspective, mucins can be grouped into acid mucins and neutral mucins based on the presence of ions in their carbohydrate components. The charged or so called “acid” mucins contain carboxylate (COO⁻) or sulfonate (SO₃⁻) ions (anions). Both of these ionizable groups are ionized (acid groups/anions) at a physiologic pH to produce an overall negative charge on these mucins. But carbohydrate component of neutral mucins lack acidic groups, and hence they do not carry no net charge (neutral). The acid mucins are found widely in the epithelium of gastrointestinal tract and respiratory tract. The neutral mucins can be found in the gastric glands, Brunner’s glands of duodenum and prostatic epithelium.

- The special stains of acid mucin usually contain cationic dyes molecules (positively charged) at a specific pH. This applies to stains like alcian blue, mucicarmine and metachromatic dyes (Azure A or toluidine blue). The cationic dye molecules bind via electrostatic forces to the anionic carboxylated or sulfated polysaccharide chains of the mucin molecules.

Mucins have some common characteristics:
- They are soluble in alkaline solutions.
- They stain intensely with basic dyes.
- They are precipitated by acetic acid excepting gastric mucin.
- They are metachromatic in many of the cases, so they turn into red or reddish blue when stained with toluidine blue or thionin.

From histochemical standpoint, mucins can be subdivided into following groups:

Acidic Mucin

Strongly Sulfated Mucin
- Epithelial mucin: Seen in bronchial serous glands, lesser extent in intestinal goblet cells.

Weakly Sulfated Mucin or Sulfomucin
- Epithelial mucin: Colonic goblet cells
- Atypical mucin: They are not stained by usual mucin stains (e.g. PAS) but stained by alcian blue, e.g. tracheobronchial mucous glands.

Carboxylated Sialomucin
- Enzyme-labile: They are digested by enzyme sialidase, hence called labile. Examples are submandibular salivary glands, bronchial submucous glands, and goblet cells of small intestine.
- Enzyme resistant: These are resistant to denaturation by the enzyme sialidase. Also, they are PAS-negative unlike enzyme labile mucins. Examples are mucosal glands of large intestine, lesser extent in stomach and bronchus.

Carboxylated Nonsulfated Uronic Acid Mucin

Hyaluronic acid: Composed of N-acetyl-D-glucosamine and D-glucuronic acid. These are widely distributed connective tissue mucin and are also found in synovial fluid, synovial membrane, umbilical cord and early placenta (surface of placental syncytiotrophoblasts).

Sulfated Sialomucin

These mucins are a mixture of sulfomucins and sialomucins. Found in synovial sarcoma and prostatic carcinoma.

Neutral Mucin

As there is no acidic group or ion (carboxyl or sulfonic group), they are neutral. They are composed of different hexosamines. Mostly they are epithelial in origin, e.g. stomach, prostate, and Brunner’s gland of duodenum.

There are many types of carbohydrates (as we see in the above classification) of which glycogen and mucins are most important. Now let us know about different types of carbohydrates which may be present in our body. This will enable us to understand role of different types of carbohydrates in many diseases including cancer (Table 1).
Manual of Histological Techniques

Table 1: Different types of carbohydrates in normal and abnormal conditions of body

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of carbohydrate</th>
<th>Location in the body</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Glycogen</td>
<td>Liver, hair follicles, voluntary muscles, endometrial glands, mesothelial cells, megakaryocyte and umbilical cord</td>
</tr>
<tr>
<td>2.</td>
<td>Neutral mucin</td>
<td>Stomach, prostate, Brunner’s gland and duodenum</td>
</tr>
<tr>
<td>3.</td>
<td>Sialomucin (enzymelabile)</td>
<td>Submandibular salivary glands, bronchial submucosal glands, goblet cells of small intestine</td>
</tr>
<tr>
<td>4.</td>
<td>Sialomucin (enzyme-resistant)</td>
<td>Large intestine, lesser extent in stomach and bronchus</td>
</tr>
<tr>
<td>5.</td>
<td>Strongly sulfated epithelial mucin</td>
<td>Bronchial serous glands, lesser extent in stomach goblet cells</td>
</tr>
<tr>
<td>6.</td>
<td>Weakly sulfated epithelial mucin (sulphomucin)</td>
<td>Colonic goblet cells</td>
</tr>
<tr>
<td>7.</td>
<td>Sulfated sialomucin</td>
<td>Prostatic adenocarcinoma</td>
</tr>
<tr>
<td>8.</td>
<td>Hyaluronic acid</td>
<td>Synovial fluid/synovium, skin, umbilical cord and early placenta</td>
</tr>
<tr>
<td>9.</td>
<td>Keratan sulfate</td>
<td>Intervertebral disc and hyaline cartilage</td>
</tr>
<tr>
<td>10.</td>
<td>Heparin/Heparan sulfate</td>
<td>Mast cells and aorta respectively</td>
</tr>
<tr>
<td>11.</td>
<td>Chondroitin sulfate A</td>
<td>Hyaline cartilage</td>
</tr>
<tr>
<td>12.</td>
<td>Chondroitin sulfate B</td>
<td>Heart valves, skin</td>
</tr>
<tr>
<td>13.</td>
<td>Chondroitin sulfate C</td>
<td>Umbilical cord, skin</td>
</tr>
<tr>
<td>14.</td>
<td>Cellulose</td>
<td>May be present abnormally in gastro-intestinal tract and skin</td>
</tr>
<tr>
<td>15.</td>
<td>Chitin</td>
<td>Hydatid cysts of liver, lung and brain</td>
</tr>
</tbody>
</table>

Table 1: Different types of carbohydrates in normal and abnormal conditions of body

CHOICE OF STAINING METHOD

Mucin can be demonstrated in paraffin, frozen and celloidin sections. Though there are so many stains, Southgate’s mucicarmine was most popular in the past. Metachromatic stains are also very good as they also stain many types of carbohydrates.

Recently PAS is getting popularity which also stains most of the carbohydrates/mucin excepting sialomucin and strongly sulfated mucin. Alcian blue and aldehyde fuchsin are sometimes preferred because of ease in staining technique. High iron diamine staining is not used nowadays (Figs 1A to D and Table 2).

❖ **PAS stain**: Stains glycogen, neutral mucin and carbohydrate portions of glycoproteins and glycolipids. This technique is perhaps the most versatile and widely used mucin stain.

❖ **PAS stain with diastase pretreatment**: Glycogen is digested, not stained by PAS but stains glycoproteins, glycolipids and glycomucins.

❖ **Alcian blue (pH 2.5)**: Best stain for acid mucins (strongly sulfated) which is produced by mesenchymal cells.

❖ **Combined Alcian blue-PAS stains**: best general mucin stain and considered as “pan” mucin stain. This combination is also useful for studying inflammatory and metaplastic conditions of gastrointestinal tract. For example, intestinal metaplasia in stomach (differentiates goblet cells of intestine and gastric mucosa).

❖ **Mucicarmine stain**: It stains strongly sulfated or acid mucin, other acidic mucin, hyaluronic acid. But neutral mucins are negative or weakly positive. Mucicarmine is commonly used but relatively insensitive stain for epithelial mucin. Mucicarmine is one of the oldest techniques and is replaced by other sensitive techniques.

METACHROMASIA AND MUCIN

Ranvier, Cornil, Jurgens and several other scientists discovered metachromasia in 1875 by using several different dyes like dahlia and cyanine. But the term...
‘metachromasia’ was first used by Ackroyd in 1876. The dyes which show metachromasia exist in orthochromatic form (normal form). When they bind to certain substances (chromotropes), these dyes are converted to polymeric (metachromatic) form. This is because the negative charges of certain chromotropes attract many positively-charged polar groups on the metachromatic dyes to polymerise and polymeric (metachromatic) form is found.

Due to this polymerization, there is a shift of absorption towards the shorter wavelength of light. Normally, toluidine blue dye exists in the blue monomeric form and when they stain nonchromatropes, they polymerize and give purple to red color. Other metachromatic stains are thionin, Azure A, methylene blue, and few fluorochromes like acridine orange, etc.

The carbohydrates or mucins which contain acidic groups or negative charges (both sulfated and carboxylated mucins) show metachromasia with metachromatic stains/dyes. The neutral mucins, as they do not have acidic groups (carboxylate or sulfonate), do not show this property (Table 3).

Carbohydrates

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of carbohydrate</th>
<th>PAS</th>
<th>AB at pH 2.5</th>
<th>AB at pH 0.2</th>
<th>Aldehyde Fuchsin</th>
<th>High iron diamine</th>
<th>Diastase digestion</th>
<th>Sialidase digestion</th>
<th>Metachromasia</th>
<th>Grocott–hexamine silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Glycogen</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>2.</td>
<td>Neutral mucin</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>Sialomucine (enzyme labile)</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>4.</td>
<td>Sialomucin (enzyme resistant)</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5.</td>
<td>Strongly sulfated mucin (epithelial)</td>
<td>–</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>6.</td>
<td>Weakly sulfated mucin (epithelial)</td>
<td>V</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>7.</td>
<td>Sulfated sialomucin</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>8.</td>
<td>Chitin</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>9.</td>
<td>Cellulose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Abbreviations: PAS, periodic acid-Schiff; AB, alcian blue; “+”, positive; “–”, negative; V, variable

Choice of Fixative

Fixatives containing picric acid or alcohol are preferred for demonstration of glycogen, e.g. Bouin’s fluid or Rossman’s solution and 80% alcohol, the original method was done by Best in 1906 in celloidin embedding after alcohol fixation. It was thought that celloidin is essential to prevent diffusion of glycogen from the tissues. But later on Lillie (1947) and Vallance–Owen (1948) proved that glycogen is not lost in running water, at least for 24 hours if tissues are properly fixed.

GLYCOCEN

It is a simple polysaccharide which contains D-glucose units in branched or straight chains. Glycogen has two main forms—alpha and beta. It, in colloidal solution, is found in the cytoplasm of certain cells. Glycogen is derived from sugar and it breaks down into sugar within one hour of death. So tissue containing glycogen either should be fixed in fixatives or it should freeze as death of tissue results in breakdown into sugar.

Table 2: Different types of carbohydrates and their staining pattern

Table 3: Mucin expression in different malignancies/tumors

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Type of malignancy</th>
<th>Neutral mucin</th>
<th>Acid mucin (strongly sulfated)</th>
<th>Glycogen (PAS positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gastrointestinal carcinoma</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>2.</td>
<td>Ovarian carcinoma</td>
<td>–/–</td>
<td>+/–</td>
<td>–/–</td>
</tr>
<tr>
<td>3.</td>
<td>Renal cell carcinoma</td>
<td>–/+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4.</td>
<td>Endometrial carcinoma</td>
<td>–/–</td>
<td>+/–</td>
<td>–/–</td>
</tr>
<tr>
<td>5.</td>
<td>Mucoepidermoid carcinoma</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>Liposarcoma</td>
<td>––</td>
<td>+</td>
<td>––</td>
</tr>
<tr>
<td>7.</td>
<td>Rhabdomyosarcoma</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>Osteogenic sarcoma</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>9.</td>
<td>Smooth muscle tumors</td>
<td>–</td>
<td>+/–</td>
<td>–/–</td>
</tr>
<tr>
<td>10.</td>
<td>Neurogenic tumors</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>11.</td>
<td>Colloid carcinoma</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>12.</td>
<td>Seminoma</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>13.</td>
<td>Ewing’s sarcoma</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>
In routine practice, formol saline or other aqueous fixatives (e.g., formalin) give adequate result. But freeze drying should be used for histochemical studies. This freeze drying technique is superior to other methods in glycogen preservation and it almost preserves 100% glycogen. This method also prevents streaming of the intracytoplasmic glycogen to one pole of the cells (polarization).

Embedding Medium

Although celloidin was used as embedding medium in the original method by Best, paraffin wax is also equally good. But frozen sections are not suitable for glycogen demonstration.

USE OF ENZYMES

- **Diastase**: This is most commonly used enzyme for glycogen digestion, as it is cheap, stable and easy to use. It may be obtained from malt or saliva. Malt diastase is available commercially and is more reliable than saliva, but salivary diastase is routine as it is easily available. Disatase removes some other things (e.g., ribonucleic acid) besides glycogen, but as these things are not PAS positive, this does not pose a threat.

- **Amylase**: This can be alpha amylase or beta amylase. Alpha amylase is extracted from hog pancreas (also available in some organisms like *B. subtilis* and *Aspergillus oryzae*). Alpha amylase digests both branched and straight chains of glycogen. Beta amylase is derived from sweet potato or barley. It digests only straight chains of glycogen.

PERIODIC ACID-SCHIFF REACTION AND STAIN

Periodic acid is a very strong oxidizing agent and under the controlled condition of the staining reaction, it reacts with the aldehyde group of the carbohydrates. This periodic acid cleaves the carbon-carbon bond in amino or alkyl amino derivatives or 1.2-glycols to form aldehydes. These aldehydes will react with fuchsin-sulfurous acid and this product combines the basic pararo-saniline to give a positive result (magenta colored compound). This compound is chemically alkyl sulfate (Figs 2A and B).

Any substance that fulfills the following criteria will give a positive result during PAS reaction (Hotchkiss, 1948).
- The substance must not diffuse away during fixation
- It must produce an oxidation product which is not diffusible
- The substance must have the 1.2-glycol grouping or the equivalent amino or alkyl-amino derivative or the oxidation product CHOH-CO
- Sufficient concentration of the substance must be present in the tissue to give a positive reaction (magenta color).

PAS Technique

- **Periodic acid solution (0.5%)**
 - Periodic acid: 1 g
 - Distilled water: 200 mL
- **Schiff’s reagent**: Dissolve 1 g basic fuchsin in 200 mL of boiling distilled water. When dissolved, cool it to 50–60°C. Add 2 g of potassium metabisulfite and mix

Figs 2A and B: PAS positive materials (mucin) are stained as magenta/bright red: (A) PAS: Appendix, low power; (B) PAS: Appendix, high power (For color version, see Plate 2)
it. Bring the mixture to room temperature and then add 2 mL of hydrochloric acid and mix it. Also add 2 g of activated charcoal and this chemical solution is kept at room temperature in a dark place overnight. Next morning, filter it (Whatman paper no. 1). The ideal solution after filtration should be pale yellow or clear. Store this solution at 4°C in dark container.

Staining Method

1. Deparaffinize two test sections and two positive control sections.
2. Treat one test section and one positive control section in diastase solution for 1 hour at 37°C.
3. Wash the sections in running tap water for 5–10 minutes.
4. Now stain all the sections with the desired staining technique for glycogen (e.g., PAS, alcian blue, mucicarmine, etc.).

Result

Presence of glycogen will be confirmed by loss of staining of glycogen after enzyme treatment, but the untreated sections will give positive staining reaction.

Alcian Blue Staining

Alcian blue is a water soluble copper thalocyanin. Although the exact staining mechanism is not known, it is presumed that alcian blue stains by salt linkage to acidic groups. Common alcian dyes are alcian blue 8GX, alcian yellow and a mixture of these two known as alcian green 2 GX (staining an emerald green color) and alcian green 3 BX (staining a blue green color). It has a high molecular weight (>1300) and one of the largest amongst the commonly used histologic dyes.

It stains acid mucin specifically but not the neutral mucin. The intensity of stain depends upon the ionization of tissue component in a particular pH. It gives best with the alcian blue dyes when in a particular pH; the tissue component is fully iodized into acid groups. This property may be advantageous to identify, to separate the different acid mucins by using alcian blue solutions of varying pH. As for example sulfate esters reacts at a lower pH, compared to carboxylated.

In general, a pH 2.5 solution of alcian blue is satisfactory. The optimum pH for different mucins is given below:

- Strongly sulfated mucin: at lower pH (pH ≤1).
- Weakly sulfated mucin: pH 2.5–1.0.
- Hyaluronic acid and N-acetyl sialomucin: pH 3.2–1.7.
- N-acetyl-O-acetyl sialomucin: pH 1.5.

Though neutral mucin is not normally stained with alcian blue dyes, it can be done by different ways (Figs 3A and B). These include:

- By employing acid esterification using a periodic acid hydrochromic acid sequence.
- Treating with an ether-sulfuric acid mixture to introduce sulfate groups (SO₄⁻⁻).
Over oxidization of neutral mucin glycol groups to form aldehydes which subsequently produce carboxylic acid or acid groups needed for alcian dyes.

Preparation of Stain
- Alcian blue: 1 g
- 10% sulfuric acid yielding a pH of 0.2: 100 mL.
 - Or 0.2 M hydrochloric acid (yielding a pH of 0.5): 100 mL.
 - Or 0.1 M HCl (yielding pH of 1): 100 mL.
 - Or 3% acetic acid (yielding pH of 0.25): 100 mL.
 - Or 0.5% acetic acid (yielding pH of 3.2): 100 mL.
Mix it to prepare the alcian blue solution. This solution should be filtered before use. Old solutions lose staining power.

Staining Method
1. Deparaffinise the sections and bring to water.
2. Stain in alcian blue solution for 10–20 minutes.
3. Rinse in distilled water (or omit and blot dry if the pH of staining is critical).
4. Counterstain with 0.5% aqueous neutral red for 2–3 minutes.
5. Rinse in water.
6. Dehydrate rapidly in 95% and absolute alcohol.
7. Clear in xylol and mount in DPX or HSR resin.

Results
- Acid mucins (and most sulfated mucopolysaccharide): Blue.
- Nuclei: Red.
- Other tissue constituents: Red.

Notes:
- For general demonstration of acid mucins, alcian blue dissolved in 3% acetic acid (pH 2.5) is the solution of choice.
- Counterstain with a weak solution of neutral red (0.1–0.5%). Otherwise it will mask the alcian blue staining.
- Staining time will vary as per strength of solution used. As for example, if a 1% solution is used for 5 minutes, 0.1% of that solution needs more time say 30 minutes.

Combined Alcian Blue – PAS Technique
This technique separates acid mucins and neutral mucins. In this technique, firstly all acid mucins are stained with alcian blue but these stained acid mucins which are also PAS-positive would not react in the subsequent PAS stain. Only the neutral mucins will be stained with subsequent PAS stain.

Staining Method
1. Step 1–3 above, followed by steps 4–10 of PAS staining.

Results
- Acid mucin: Blue
- Neutral mucins: Magenta.
Points to Remember

- Avoid Ehrlich’s hematoxylin as a counterstain as it stains certain types of mucin and hampers final staining method.
- Stain lightly with counterstain otherwise it will be difficult to distinguish the staining color of hematoxylin and alcian blue (both give blue color).

SOUTHGATE’S MUCICARMINE METHOD
(MAYER, 1896; MODIFIED BY SOUTHGATE, 1927)

Southgate’s modification of Mayer’s original method (which did not contain aluminium hydroxide) gives more consistent results. This stain demonstrates both gastric and epithelial mucin well.

Composition of Staining Solution

- Carmine: 1 g
- Aluminium hydroxide: 1 g
- 50% alcohol: 100 mL
- These constituents are mixed by shaking and then add aluminium chloride (anhydrous): 0.5 g.

Preparation

Boil the above mixture in water – bath for 2.5–3 minutes. Cool, filter and store at 4°C.

Staining Method

1. Deparaffinize histologic sections and bring to water.
2. Stain the nuclei with conventional hematoxylin (but not with Ehrlich).
3. Differentiate in acid alcohol and blue in tap water.
4. Stain with above staining solution for 20–30 minutes.
5. Rinse in distilled water.
6. Dehydrate in 95% and absolute alcohol.
7. Clear in xylene and mount in Canada balsam or DPX.

Results

- Mucin: Red
- Nuclei: Blue.

Points to Remember

- It is also useful to stain encapsulated fungi, e.g. Cryptococcus neoformans.

Best Carmine Method (Best 1906)

Composition of Staining Solution

- Carmine stock solution:
 - Carmine: 2 g
 - Potassium carbonate: 1 g
 - Potassium chloride: 5 g
 - Distilled water: 60 mL
 - These reagents in a 250 mL flask should be gently boiled for 3–5 minutes until the color deepens. The deeper color will give deeper stain of glycogen. Cool the mixture and add 20 mL of concentrated ammonia. Filter it and store in a refrigerator at 4°C (0–5°C) or in a dark container at 4°C. Discard after 6–8 weeks.
- Carmine working solution:
 - Carmine stock solution: 12 mL
 - Fresh concentrated ammonia: 18 mL
 - Methyl alcohol: 18 mL

Fig. 4: Mucicarmine stains strongly sulfated or acid mucin as red (For color version, see Plate 3)
Best’s differentiating fluid:
- Absolute alcohol: 20 mL
- Methyl alcohol: 10 mL
- Distilled water: 25 mL.

Staining Method

1. Dewax the histologic sections and bring to water.
2. Place in alum hematoxylin (Harris or Ehrlich) for 10–15 minutes to stain nuclei.
3. Rinse rapidly in 1% acid alcohol for differentiation to make the background clear.
4. Wash in running tap water to remove alcohol and blueing.
5. Stain with carmine working solution for 10–15 minutes.
6. Wash slide with Best’s differentiating fluid for celloidine section. Use methyl alcohol for paraffin sections.
7. Flood with fresh alcohol or acetone.
8. Clear in xylol and mount in DPX or Canada balsam.

Results
- Glycogen: Deep red
- Nuclei: Blue
- Some mucin, fibrin: Weak red
- Nuclei: Deep red
- Some mucin, fibrin: Weak red