Practical Perimetry

Practical Perimetry is a collective effort of clinicians and glaucomatologists from around the globe. It is a practical primer on perimetry for general ophthalmologists, glaucoma surgeons, neuro-ophthalmologists, and trainees as well. The book is extensively illustrated with examples of real-life clinical scenarios and aims to help the clinician choose the appropriate diagnostic protocol and achieve optimal results each time the visual field is performed, in terms of both reliability and interpretation. The book also elucidates the key points to look out for when using visual fields in the serial monitoring of patients.

It is also an attempt to keep the clinicians abreast of the latest developments in visual field charting, especially the novel platforms available for correlation of structure and function and its place in the serial monitoring of both glaucoma and neuro-ophthalmo-logical diseases.

Shibal Bhartiya

M.S. Ophthalmology

Shibal Bhartiya is currently working as a senior consultant glaucoma surgeon at Fortis Memorial Research Institute, Gurgaon, Haryana, India and Fortis BIL Rajiv Hospital, New Delhi, India. She was a Senior Clinical Research Fellow in the Glaucoma Services of the Department of Clinical Neurosciences, University of Geneva, Switzerland. Prior to that, she did her glaucoma training as Senior Research Associate in the Cornea and Glaucoma Services at Dr. Raj Centre for Ophthalmic Sciences, AIIMS, New Delhi.

She has published extensively in glaucoma, contributing several chapters to books and peer-reviewed journals alike. She has co-edited the prestigious IGG Textbook of Glaucoma Surgery and the Manual of Glaucoma and is the Managing Editor of the Video Atlas of Glaucoma Surgery. An avid educator and researcher, she has been responsible for the design and execution of many clinical trials in both clinical and basic research.

Shibal Bhartiya has lectured at and chaired various sessions in regional and international meetings. She serves as a reviewer for many ophthalmology journals and is the Executive Editor of the Journal of Current Glaucoma Practice, the Official Journal of the International Society of Glaucoma Surgery.

Murali Ariga

M.D. FRCOphth

Murali Ariga is an Ophthalmic practice at Chennai with special interests in glaucoma, premium IOLs, and refractive surgery. He is the Director and Senior Consultant, Swamy Eye Clinic and Chennai Glaucoma Foundation and Director, Academy and Research, M D Eye Hospitals and PG Institute, Chennai affiliated to National Board of Examination (NBE). He has considerable experience in the diagnosis and management of glaucoma including automated perimetry, spectral OCT imaging, lasers, and surgeries. He has more than 20 publications and has made numerous presentations at national and international meetings as faculty/panelists in different topics related to glaucoma. He was awarded the best scientific presentation award for his study on ‘Pharmacoeconomics of Glaucoma’ at the Glaucoma Society of India meeting in 2008. He has also been awarded the FAGOC (Glaucoma) by the AGOC at the FAGOC-AGOC 2015.

Dr. Ariga is actively involved in teaching PG (MCh) students in Ophthalmology and Optometry in Chennai and conducts many instruction courses on perimetry.

George V Puthuran

M.S. Ophthalmology

George V Puthuran has completed his medical degree from Government Medical College Kottayam in 1996 and M.S. (ophthalmology) in 1999 from Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India. He is currently Head of the Department of Glaucoma at Aravind Eye Hospital, Madurai. He is the South Zone representative of the present executive committee of the Glaucoma Society of India.

Dr. George is the principal investigator in the safety and efficacy of auriculo-aqueous drainage implants (AADI) study. The AADI is similar in design to the Baerveldt glaucoma implant and is a cost-effective alternative to patients with refractory glaucoma in resource-poor communities in the developing world. Evolution of an affordable AADI- The Indian Story ... was one of the three winning films at the World Glaucoma Congress 2013 held at Vancouver.

Ronnie George

M.D. Ophthalmology

Ronnie George has completed his ophthalmology training from Christian Medical College, Vellore, Tamil Nadu, India. He has been working in the glaucoma department of Sankara Nethralaya in Chennai since then. He is currently Senior Consultant in the Glaucoma Services, Professor Elite School of Optometry, Chennai, Tamil Nadu, India, and Research Director for Medical and Vision Research Foundations, Chennai. He has published 90 indexed publications and eight book chapters. He is the past Secretary of the Glaucoma Society of India and currently as Associate Advisory Board member of the World Glaucoma Association.

Available at all medical bookstores or buy online at www.jaypeebrothers.com

JAYPEE BROTHERS Medical Publishers (P) Ltd.
www.jaypeebrothers.com

Join us on Facebook.com/JaypeeMedicalPublishers

Shibal Bhartiya
Murali Ariga
George V Puthuran
Ronnie George

Foreword
R Ramakrishnan
Practical Perimetry

Shibal Bhartiya MS (Ophthalmology)
Senior Consultant
Department of Glaucoma
Fortis Memorial Research Institute
Gurgaon, Haryana, India
Fortis Flt Lt Rajan Hospital
New Delhi, India

George V Puthuran MS (Ophthalmology)
Head
Department of Glaucoma
Aravind Eye Hospital
Madurai, Tamil Nadu, India

Murali Ariga MS DNB FAICO
Director
Swamy Eye Clinic
Director, Academics and Research
MN Eye Hospitals and Postgraduate Institute
Visiting Consultant, Sundaram Medical Foundation
Chennai, Tamil Nadu, India

Ronnie George DO DNB MS
Senior Consultant
Department of Glaucoma
Sankara Nethralaya
Glucoma Services
Professor
Elite School of Optometry
Research Director
Medical and Vision Research Foundation
Chennai, Tamil Nadu, India

Foreword
R Ramakrishnan

The Health Sciences Publisher
New Delhi | London | Philadelphia | Panama
CONTRIBUTORS

Anuj Ponnappa
Consultant
Glaucoma Clinic
Aravind Eye Hospital
Coimbatore, Tamil Nadu, India

Avika Kanathia
Consultant
Glaucoma Clinic
Aravind Eye Hospital
Coimbatore, Tamil Nadu, India

Chitralekha De
Consultant
Narayana Nethralaya
Bengaluru, Karnataka, India

Chris A Johnson
Professor
Department of Ophthalmology and Visual Sciences
University of Iowa
Iowa City, Iowa, USA

Dewang Angmo
Associate Professor
Dr RP Centre for Ophthalmic Sciences
All India Institute of Medical Sciences
New Delhi, India

Dhanaraj AS Rao
Consultant
Glaucoma Clinic
Narayana Nethralaya
Bengaluru, Karnataka, India

Gábor Holló
Director
Glaucoma Service and Perimetry Unit
Department of Ophthalmology
Semmelweis University
Budapest, Hungary

Ganesh V Raman
Head
Glaucoma Clinic
Aravind Eye Hospital
Coimbatore, Tamil Nadu, India

George V Puthuran
Head
Department of Glaucoma
Aravind Eye Hospital
Madurai, Tamil Nadu, India

Gowri J Murthy
Senior Consultant
Department of Glaucoma
Prabha Eye Clinic
Bengaluru, Karnataka, India

Harsha L Rao
Consultant
Glaucoma Clinic
Narayana Nethralaya
Bengaluru, Karnataka, India

Krishnamurthy Palaniswamy
Consultant
Glaucoma Clinic
Aravind Eye Hospital
Puducherry, India

Laura Crawley
Consultant
Glaucoma specialist
Western Eye Hospital
Marylebone Road, London, UK

Monica Gandhi
Consultant
Department of Glaucoma
Dr Shroff’s Charity Eye Hospital
Daryaganj, New Delhi, India
Murali Ariga
Director
Swamy Eye Clinic
Director, Academics and Research
MN Eye Hospitals and Postgraduate Institute
Visiting Consultant, Sundaram Medical Foundation
Chennai, Tamil Nadu, India

Nadia Ríos-Acosta
Asociación Para Evitar la Ceguera en México
Departamento de Glaucoma
Vicente García Torres #46
Col San Lucas – Coyoacan, México

Narendra K Puttaiah
Consultant
Glaucoma Clinic
Narayana Nethralaya
Bengaluru, Karnataka, India

Neiwete Lomi
Senior Resident
Postgraduate Institute of Ophthalmology
Chandigarh, India

Nikhil S Choudhari
Consultant
Glaucoma Services
LV Prasad Eye Institute
Hyderabad, Telangana, India

Oscar Albis-Donado
Asociación Para Evitar la Ceguera en México
Departamento de Glaucoma
Vicente García Torres #46
Col San Lucas – Coyoacan, México DF

Padmamalini Mahendradas
Consultant
Narayana Nethralaya
Bengaluru, Karnataka, India

Parul Ichhipujani
Assistant Professor
Department of Ophthalmology
Government Medical College and Hospital
Chandigarh, India

Preeti Gupta
Consultant
Department of Glaucoma
Aravind Eye Hospital
Madurai, Tamil Nadu, India

Rajani S Battu
Consultant
Narayana Nethralaya
Bengaluru, Karnataka, India

Rengaraj Venkatesh
CMO and Head
Glaucoma Services
Aravind Eye Hospital
Puducherry, India

Rishi Raj Singh
Senior Resident
Postgraduate Institute of Ophthalmology
Chandigarh, India

Ronnie George
Senior Consultant
Department of Glaucoma
Sankara Nethralaya
Glaucoma Services
Chennai, Tamil Nadu, India

Shabana Bharathi D
Consultant
Glaucoma Clinic
Aravind Eye Hospital
Coimbatore, Tamil Nadu, India

Shantha B
Deputy Director
Glaucoma Services
Sankara Nethralaya
Chennai, Tamil Nadu, India

Sally Ameen
Consultant
Glaucoma Specialist
Western Eye Hospital
Marylebone Road, London, UK
Sathi Devi AV
Head
Glaucoma Clinic
Narayana Nethralaya
Bengaluru, Karnataka, India

Savleen Kaur
Senior Resident
Postgraduate Institute of Ophthalmology
Chandigarh, India

Shibal Bhartiya
Senior Consultant
Department of Glaucoma
Fortis Memorial Research Institute
Gurgaon, Haryana, India
Fortis Flt Lt Rajan Hospital
New Delhi, India

Siresha Senthil
Head
Glaucoma Services
LV Prasad Eye Institute
Hyderabad, Telangana, India

Sneha Sharma
Consultant
Department of Glaucoma
Aravind Eye Hospital
Madurai, Tamil Nadu, India

Suneeta Dubey
Consultant
Dr Shroff’s Charity Eye Hospital
Daryaganj, New Delhi, India

Supriya Dabir
Consultant
Narayana Nethralaya
Bengaluru, Karnataka, India

Surinder Singh Pandav
Professor
Postgraduate Institute of Ophthalmology
Chandigarh, India

Sushmita Kaushik
Professor
Postgraduate Institute of Ophthalmology
Chandigarh, India

Tanuj Dada
Professor
Dr RP Centre for Ophthalmic Sciences
All India Institute of Medical Sciences
New Delhi, India

Vijaya L
Head of Department
Glaucoma Services
Sankara Nethralaya
Chennai, Tamil Nadu, India

Yamunadevi Lakshmanan
Consultant
Glaucoma Services
Sankara Nethralaya
Chennai, Tamil Nadu, India

Zia S Pradhan
Consultant
Narayana Nethralaya
Bengaluru, Karnataka, India
Over time, perimetry has evolved from confrontation visual field evaluation to the current state-of-the-art automated perimeters which even offer structural and functional correlation. The wealth of information thus made available from visual field testing has revolutionized current glaucoma practice, and has provided new dimensions to the management of neurological disease as well. Numerous models with multiple software and testing-strategies has further deepened the knowledge of perimetry, making it one of the most important tools in the ophthalmologists’ armamentarium.

I take great pleasure and pride in introducing this remarkable book on Practical Perimetry edited by Shibal Bhartiya, Murali Ariga, George V Puthuran and Ronnie George. It is the collaborative effort of an esteemed panel of ophthalmologists under their able leadership and provides an in-depth illustration of the science and art of perimetry.

Not only does this book address visual field analysis in patients of glaucoma, it also focuses on perimetry in retinal diseases and neuro-ophthalmological disorders. The book covers the entire evolution of visual field analysis: from the history of perimetry to role of frequency doubling perimetry (FDP), short wavelength automated perimetry (SWAP) and the recent advances for structural-functional correlation. Each of the sections and chapters of the book is well illustrated with ample color pictures and visual field print-outs, explaining the concepts with meticulous detail. The editors and authors must be congratulated for highlighting the clinical relevance of each visual field, and progression analysis with well-illustrated examples from clinical situations.

I do believe that the book Practical Perimetry will prove invaluable to postgraduate students, fellows and practising ophthalmologists in learning and refining interpretation of visual fields, and in its clinical correlation, thereby, improving the standard of care provided to our patients.

I wish the editors and the book all the success.

R Ramakrishnan MS DO
CMO and Professor
Glaucoma Services
Aravind Eye Hospital, Tirunelveli
Tamil Nadu, India
Medical technology in the recent years has evolved at a pace hitherto unimaginable. Despite, the cornerstones of glaucoma diagnosis and management remain intraocular pressure measurement and perimetry, that is the monitoring of visual fields. Not only that, perimetry remains an art form, the performance and interpretation of which continue to confound generations of ophthalmologists and optometrists alike.

The book that you hold in your hands, Practical Perimetry, is a distillation of the collective efforts of clinicians and glaucomatologists from around the globe. The book aims to help the clinician choose the appropriate diagnostic protocol, and achieve optimal results each time the visual field is performed in terms of both reliability and interpretation. The book also elucidates the key points to look out for when using visual fields in the serial monitoring of patients. It has also been our attempt to illustrate each of the complicated concepts with pertinent clinical cases, so as to elucidate the fallacies and pitfalls in interpretation.

This book is also an attempt to keep you abreast of the latest developments in visual field charting, especially the novel platforms available for correlation of structure and function, and its place in the serial monitoring of both, glaucoma and neuro-ophthalmological diseases.

It should suffice to say that it is our earnest endeavor to help you take care of your patients better, and we hope you find reading this book as enjoyable and fruitful as we found putting it together.

Shibal Bhartiya
Murali Ariga
George V Puthuran
Ronnie George
Section 1: Basics of Automated Perimetry

1. Normal Visual Field
 George V Puthuran, Murali Ariga, Preeti Gupta, Sneha Sharma
 Normal Visual Field 3
 Principles of Visual Field Testing 4
 Choosing Test Pattern 6
 Stimulus Size 7
 Stimulus Duration 7
 Background Illumination 7
 Gaze Tracker 7
 Confounding Factors and Artefacts 8

2. Choice of Perimeters—A Comparison
 Monica Gandhi, Suneeta Dubey, Shibal Bhartiya
 Humphrey’s Field Analyzer 13
 Octopus 13
 Correlation of Fields between the two Perimeters 24
 Networking and Compatibility 24
 Merits and Demerits 24
 Oculus Perimeters 24

Section 2: Visual Field Interpretation

Interpretation of Single Field Reports

3. Humphrey Single Visual Field Analysis in Glaucoma
 Oscar Albis-Donado, Nadia Ríos-Acosta
 Basic Information and Demographics 30
 Reliability Indices 31
 Grayscale and Raw Numeric Results 31
 Total Deviation Map 31
 Pattern Deviation Map 34
 Glaucoma Hemifield Test 37
 Global Indices 37
 Special Considerations 37

4. Octopus Perimetry: Analyzing the Single Field Reports
 Gábor Holló
 Understanding the Classic Octopus Single Visual Field Report 43
 ‘Cluster Analysis’ and ‘Corrected Cluster Analysis’ 46
 Understanding the ‘Polar Graph’ 46
 How to Use the Different Analysis Methods for a Single Octopus Visual Field Analysis? 47
5. Pearls and Pitfalls in Perimetry 49
 Neiwete Lomi, Sushmita Kaushik, Savleen Kaur, Rishi Raj Singh, Surinder Singh Pandav
 Practical Pearls in Recording Fields 49
 Data Entry 49
 Patient Placement 49
 Instructions to the Patient 50
 Threshold Perimetry Analysis 50
 Reliability Indices 50
 Practical Pearls in Assessment of Fields 51
 Pitfalls in Automated Perimetry 52

Analyzing Progression in Visual Fields

6. Visual Field Progression 61
 Yamunadevi Lakshmanan, Ronnie George, Shantha B, Vijaya L
 Challenges in Assessing the Visual Field Progression 61

7. Visual Field Progression Analysis with Octopus Perimetry 84
 Gábor Holló
 How Many Tests are Needed for Progression Analysis? 84
 Progression Analysis Functions Offered by the Octopus EyeSuite Software 84
 Global Progression Analysis with the Octopus EyeSuite Software 85
 Cluster Progression Analysis with the Octopus EyeSuite Software 86
 Progression Analysis with the Polar Trend Analysis Function of the Octopus EyeSuite Software 86
 How to Use the Different Progression Analysis Methods for Octopus Visual Field Progression Analysis? 86

Perimetry in Glaucoma with Examples

8. Visual Field 88
 Sally Ameen, Laura Crawley
 Definition 88
 Assessment 89
 How to Measure a Visual Field? 89
 Examples of Visual Field Defects 92

Section 3: Special Situations

9. Structural and Functional Correlation in Glaucoma 99
 Ganesh V Raman, Shabana Bharathi D, Avika Kanathia, Anuj Ponnappa

10. Role of Perimetry in Diagnosis and Management of Neuro-ophthalmic Disorders 115
 Nikhil S Choudhari, Soudha Senthil
 How Visual Field Interpretation is Different in Neuro-ophthalmology than that in Glaucoma? 115
 Selection of an Automated Visual Field Test in Neuro-ophthalmology 117
 Visual Fields to Diagnose Neuro-ophthalmic Disorders 119
 Visual Fields to Localize Site of Lesion in the Visual Pathway 119
 Visual Fields in the Follow up of a Neuro-ophthalmic Condition 127

11. Role of Perimetry in the Diagnosis and Management of Retinal/Macular Disorders 129
 Sathi Devi AV, Gowri J Murthy, Rajani S Battu, Padmamalini Mahendradas, Supriya Dabir, Chitralekha De
 Types of Perimetry 129
 Choosing the Test 130
 Perimetry in Specific Retinal Diseases 130
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Frequency Doubling Perimetry</td>
<td>157</td>
</tr>
<tr>
<td>Parul Ichhpujani, Shibai Bhartiya, Dewang Angma, Tanuj Dada</td>
<td></td>
</tr>
<tr>
<td>Concerns with Standard Automated Perimetry</td>
<td>157</td>
</tr>
<tr>
<td>Frequency Doubling Principle</td>
<td>157</td>
</tr>
<tr>
<td>Advantages of FDP</td>
<td>162</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>164</td>
</tr>
<tr>
<td>Scientific Evidence</td>
<td>164</td>
</tr>
<tr>
<td>13. Short Wavelength Automated Perimetry</td>
<td>166</td>
</tr>
<tr>
<td>Rengaraj Venkatesh, Krishnamurthy Palaniswamy</td>
<td></td>
</tr>
<tr>
<td>Relevance of SWAP</td>
<td>166</td>
</tr>
<tr>
<td>Two-color Increment Threshold</td>
<td>166</td>
</tr>
<tr>
<td>SWAP-Glaucoma Applications</td>
<td>167</td>
</tr>
<tr>
<td>SWAP-Structure-Function Relationship</td>
<td>168</td>
</tr>
<tr>
<td>SWAP-Neuro-ophthalmology Applications</td>
<td>168</td>
</tr>
<tr>
<td>SWAP-Age-related Macular Degeneration Applications</td>
<td>168</td>
</tr>
<tr>
<td>SWAP-Diabetes Applications</td>
<td>168</td>
</tr>
<tr>
<td>14. Integrating Technologies in Glaucoma Diagnosis: Current Status</td>
<td>171</td>
</tr>
<tr>
<td>Shibai Bhartiya, Parul Ichhpujani, Oscar Albis-Donado</td>
<td></td>
</tr>
<tr>
<td>Integration of Technology in Patient Care</td>
<td>171</td>
</tr>
<tr>
<td>Compliance and Adherence</td>
<td>172</td>
</tr>
<tr>
<td>Follow up Reminders</td>
<td>172</td>
</tr>
<tr>
<td>Electronic Medical Record or Electronic Health Record</td>
<td>172</td>
</tr>
<tr>
<td>Cost Benefit</td>
<td>172</td>
</tr>
<tr>
<td>Intranet and Medical Records</td>
<td>172</td>
</tr>
<tr>
<td>Cross Referrals and Systemic Diseases</td>
<td>172</td>
</tr>
<tr>
<td>Use of Macros</td>
<td>173</td>
</tr>
<tr>
<td>Field OCT Correlation</td>
<td>175</td>
</tr>
<tr>
<td>Spectralis has a Prototype, yet not Available in Clinical Practice</td>
<td>178</td>
</tr>
<tr>
<td>Challenges and the Future</td>
<td>178</td>
</tr>
<tr>
<td>15. Recent Advances in Perimetry</td>
<td>180</td>
</tr>
<tr>
<td>Harsha L Rao, Narendra K Puttaiah, Dhanaraj AS Rao, Chris A Johnson</td>
<td></td>
</tr>
<tr>
<td>Flicker Perimetry</td>
<td>180</td>
</tr>
<tr>
<td>Motion Perimetry</td>
<td>180</td>
</tr>
<tr>
<td>High-pass Resolution (HPR) or Ring Perimetry</td>
<td>181</td>
</tr>
<tr>
<td>Rarebit Perimetry (RBP)</td>
<td>181</td>
</tr>
<tr>
<td>Flicker-defined Form (FDF) or Edge Perimetry</td>
<td>181</td>
</tr>
<tr>
<td>Fundus Perimetry</td>
<td>182</td>
</tr>
<tr>
<td>16. Care and Maintenance of Perimeters</td>
<td>187</td>
</tr>
<tr>
<td>Shibai Bhartiya, Parul Ichhpujani</td>
<td></td>
</tr>
<tr>
<td>General Instructions</td>
<td>187</td>
</tr>
<tr>
<td>Humphrey’s Visual Field Analyzer</td>
<td>187</td>
</tr>
<tr>
<td>Octopus Perimeter</td>
<td>189</td>
</tr>
<tr>
<td>Medmont Automated Perimeter</td>
<td>189</td>
</tr>
<tr>
<td>17. The History of Perimetry</td>
<td>191</td>
</tr>
<tr>
<td>Harsha L Rao, Zia S Pradhan, Chris A Johnson</td>
<td></td>
</tr>
</tbody>
</table>

Index 195
Visual field examination has been the gold standard to detect structural loss in glaucoma over decades now. The technique has undergone a paradigm shift from kinetic to static and now to automated perimetry. Automated perimeters make our work as glaucoma specialists much simpler but at the same time is not without its own limitations. Common pitfalls in perimetry at the time of testing as well as assessment can lead to misdiagnosis in many situations.

Practical Pearls in Recording Fields

Always inform the patient about the procedure before starting. The patient should be reassured that during the field recording, more than 50% of the light spots will not be seen. Give the patient an option to pause the test in between if he/she is tired. The patient should have taken enough rest, and ensure that he/she is attentive. Movements of the other eye can cause watering and discomfort, therefore close the other eye well. If the patient has a poor attention span, one can select faster tests like 24-2 SITA fast. If a test result is abnormal or shows progression, always repeat the test. Always record the visual fields on the same program which has been used earlier for better and meaningful comparisons.

Data Entry

Date entry is required as a preliminary step, under the tab “Main menu”. The following entries are included:

1. **Date, time**: These may be automatically entered by the computer.
2. **Patient name, identification number, and birth date**: If the examiner wishes to have the perimeter print out as a sequential analysis of several fields, done over time in the same patient, the name must be entered exactly the same on all fields. Numbers and birth dates help to differentiate patients with the same name.
3. **Visual acuity, pupil diameter (in clinic), and refractive correction used during perimetry**: Again, if comparisons over time are to be made, the examiner needs to know if any of these factors are changing. A decrease in pupil diameter from 4 to 2 mm will reduce sensitivity by about 0.7 dB. Refractive blur will also increase thresholds diffusely.
4. **The type of test and eye being tested**: Finally, on the next screen, the type of test to be performed is chosen, following which the eye being tested is indicated. After this a screen appears with a display of the locations that will be tested in the field, along with the reliability indices that will be completed. There is an option to display the eye position monitor, which is a video camera view of the patient’s eye for online monitoring of fixation. This option should be chosen. The screen remains visible during the test.

Patient Placement

The eye not being tested is occluded with a patch. The patch should be flush to the nose and not protruding to avoid obscuring the vision of the viewing eye. The buzzer is placed in the patient’s hand. Either the chair or the perimeter is adjusted for the patient’s height. Discomfort resulting from poor posture maintained over 10 minutes
Instructions to the Patient

Giving instructions to the patients is critical, particularly in those new to the test. A few minutes of counselling greatly increases the likelihood of obtaining useful data. The following key points must be stressed to all patients:

1. They should always look at the steady yellow light at the center, no matter how boring this is. If they are looking away, we have no idea of fixation, and if this happens too often the test becomes meaningless.

2. While they fix on the yellow light, the computer will flash small spots of light at random locations in their side vision. Their task is to press the button in their hand every time they are aware of something flashed.

3. If this is a threshold test, the perimeter is trying to determine at each location the boundary between the visible and the invisible. This has two consequences. The first is that there will always be some very faint lights that they do not see, no matter how good their vision is. The second is that lights very close to the boundary will be quite dim and they will feel uncertain of their presence. They should do their best but simply signal if they are aware that something has flashed, no matter how dim it is.

4. They should not feel afraid to blink from time-to-time. The best plan is to blink just after they see a target, since there is always a short interval between one target and the next.

5. A typical threshold test will take about 10 minutes for each eye.

6. It is best if a technician monitors the test, providing feedback on fixation via the eye monitor, but patients should not talk to the technician unless there is a problem. On the screen displayed during the test, the perimeter initially provides the option of a short demonstration. The lights should be dimmed and this demo should be shown so that (1) the patient can see examples of the flashes that are the targets, and (2) the examiner can see that the patient understands the concept of fixation. It is useful to remind the patient at this point to keep their eye on the yellow spot and press the button when they see the small white flashes. Once the operator is confident that the patient can comply with fixation and respond to flashes, the test can be started. After completion of the first eye’s test, the occluder is removed and the lights turned on so that the occluded eye recovers from its dark adaptation state.

Threshold Perimetry Analysis

The Single-Field Analysis

Always check a few simple things first. The name, to ensure that it is the right patient; the date; and the refraction used. The latter is important when comparing one field with another in follow-up. An apparent global decrease in sensitivity may merely reflect a difference in lenses used, with presumably improper refraction on one occasion.

Reliability Indices

Can you trust what you see or is it junk? These indices will help you:

1. **Fixation loss (FL):** The perimeter periodically flashes a target in the physiologic blind spot, which it maps early in the course of the test. If the patient is not looking at the yellow fixation light, he or she will see the flash and press the button. The denominator tells how many times the perimeter tested for this, and the numerator the number of times the patient fell for it. Frequent FLs cast doubt on the sensitivity of the test to find subtle defects. The location and margins of such defects will be degraded by a roving eye. On the other hand caution is required when interpreting seemingly low fixation loss indices in patients with blind spots that are enlarged or fall within larger field defects (such as a temporal hemianopia). These patients may still not see the target probing for FL even if they are making large movements with their eyes. This means of monitoring fixation is known as the Heijl-Krakau method. The disadvantage is that the results cannot be modified by fixation data.

Other automated devices monitor actual eye position with video or infrared technology and either halt testing or exclude trials with improper eye position. The newer Humphrey Field analyzers also monitor eye position with a video system but do not use the data to modify data on-line, except to exclude trials in the case of blinks. Rather, a small graph is made to provide one with a sense of eye stability during the test, to augment the FL index.

2. **False positives (FPs):** Occasionally there are intervals during which the machine makes a soft click but shows no target. An overly sensitive subject will have a high FP error rate, pressing the button during these intervals. This too will lead to underestimation of the severity and
extent of a defect. SITA strategy does not use these “catch trials” but, rather, counts the number of anticipatory responses, made too soon after a flash to be a considered as a response to the light.

3. False negatives (FNs): A fairly bright suprathreshold target is flashed in a region previously tested with fainter targets. If the patient fails to indicate its presence, this is a FN error. A high FN rate usually implies inattention or fatigue and will be accompanied by a field with scattered factitious elevations of threshold. For all these reliability indices, the Humphrey field analyzer suggests that more than 20% error rate is a warning of poor reliability. This will be indicated by an “XX” beside the aberrant value and a printed statement of “low patient reliability,” in the upper left corner.

4. Number of questions asked and time taken to do the test: These are not usually that important, but if the patient’s reliability is poor, it may be because the test took a long time and presented a lot of trials, leading to fatigue. The problem can also work in the other direction. An unreliable patient will confuse the machine’s algorithms and not allow it to use its statistical shortcuts, leading to longer test times. Patients with complex field defects generally take longer to test than those with normal fields.

Practical Pearls in Assessment of Fields

One should never comment on possible glaucoma based on fields, until the patient has been examined (Fig. 5.1). Old age, ailments, poor attention span, cataract surgery, presence of retinal or neurological disease may result in variation in fields and hence need a series of fields to assess progression. If the first field is abnormal, one should repeat it, as 85% of patients will lose the defect on first field. Two consistent visual fields are required before we comment on any visual field. When a diagnosis is questionable, then the course visual fields take over time is the only sure way to determine whether a visual field defect is due to glaucoma or not.

Fig. 5.1: Showing a typical glaucomatous field defect. Clinical examination shows a superior notch in the right disc (right up) with corresponding retinal nerve fiber layer wedge defect (arrow) and inferior field loss (left)
Pitfalls in Automated Perimetry

Despite automation and sophisticated statistical analysis, perimetry has several pitfalls. Experts have cautioned that fields should not be interpreted in isolation, but in the light of clinical findings. Non-glaucomatous retinal and optic disc pathologies cause visual field defects leading to the misinterpretation of glaucoma. We illustrate a few clinical situations with fallacious field changes which can lead to misdiagnosis.

Retinal Defects

Sometimes retinal lesions can cause changes in the visual field similar to glaucoma (Figs 5.2 and 5.3). A careful examination of retina and optic disc is necessary to rule out any such cause. Retinal pathologies generate deeper lesions in the visual field with absolute scotomas that have sharp borders and do not respect the horizontal meridian. This is in contrast to a glaucomatous visual field loss that has less clearly defined borders but at the same time respects the horizontal meridian.

Neurological Causes

Neurological disorders are also very important when correlating visual field and optic disc changes because ganglion cell loss in neurological disorders also causes field defects. The characteristic pattern of visual field loss in neurological disorders is different from the glaucomatous visual field loss. They do not respect the horizontal meridian and generally the defects are usually confined to one side of the vertical meridian (Fig. 5.4). Optic disc in such cases appears healthy or shows temporal pallor due to loss of papillomacular bundle and does not follow the ISNT rule. Sudden appearance of vertical visual field defect in the field should raise the suspicion of a neurological abnormality.

Preretinal Defects

Age gradually depresses the visual field. Light-difference sensitivity decreases with age partly due to age-related loss of nerve fibers and increased condensation of the media. Abnormalities that interfere with media clarity reduce illumination and therefore depress the visual field; they also

Fig. 5.2: Dilated examination revealed both eyes cystoid macular edem
Fig. 5.3: A 60-year-old woman diagnosed as glaucoma and referred; IOP 16; 12; Large CD ratio LE > RE. VF showed RE normal and LE showed an inferonasal defect. Careful examination revealed a superotemporal branch retinal vein occlusion which was laser ed in the left eye (below)
exaggerate existing visual field defects. Cataracts or media opacities produce a diffuse depression on the total deviation plot causing the visual fields to be severely depressed while the optic disc may be healthy (Fig. 5.5). Optically the posterior subcapsular area is behind the nodal point of the eye and an inferior opacity will translate as a superior field defect. In a glaucoma suspect such localized defects would be attributed to glaucomatous damage. Hence similar field defects occurring in patients under follow up for glaucoma could be mistaken for progression.

In glaucomatous optic neuropathy, severely depressed fields do not occur until and unless advanced optic neuropathy sets in with complete loss of ganglion cells. Media opacities causing such type of field defect have to be ruled out clinically before starting treatment.

False Depressions

Depression in the visual field can be due to some physiological phenomenon or some technical errors that we should keep in mind while interpreting the visual field.

Inexperienced Patient

Patient doing visual field for the first time may have visual field defects that are known as learning defects. These that mainly affect the mid peripheral lesions that do not correlate clinically (Fig. 5.6). These defects generally disappear on the sequential visual field testing or with the experience of the patient. A lot of patients experience a visual field defect owing to the learning curve. For this reason, a demonstration test may be run before the first test. The learning curve involves learning to respond consistently during the test. With experience, patients are noted to respond to more dim stimuli and to stimuli presented further away from the central fixation point. Therefore, the usual artefact from an initial test is an overall reduction in sensitivity of the visual field. Localized visual field defects which are typically seen relating to papilloedema and optic nerve head pathology are therefore unlikely to be artefacts. Probability plots will often allow detection of localised visual field loss despite over-riding reduction in sensitivity.

Fig. 5.4: Visual field defects in a 45-year-old female are significant but obey the vertical meridian. The discs are normal and hence rule out a glaucomatous filed defect. Neuroimaging revealed a pituitary macroadenoma.
Chapter 5 Pearls and Pitfalls in Perimetry

Fig. 5.5: Visual field changes due to cataract may be misleading. Cataracts produce defects evident as a diffuse depression on the total deviation plot causing the visual fields to be severely depressed while the optic disc may be healthy.

Fig. 5.6: Seems laterally enlarged—could be resized
Hence, the first visual field should not be taken under consideration until or unless they clinically correlate. Patients should be subjected to a repeat visual field for the confirmation of field defect. Where suspicion exists regarding the reliability of the first test, the patient may be recalled for a second test at a later stage, and the second test taken as the baseline if felt to be more accurate.

Fatigue

As the test progresses, a long test strategy causes fatigue that mainly affects the mid-peripheral region. Hence the sensitivity of these points decreases as compared to surrounding points that appears as a scotoma in the visual field. To avoid these, a fast strategy should be adopted. Also we should follow the visual field of the same strategy on the subsequent follow up.

Physiological/pathological Ptosis

Glaucoma is a disorder of an elderly age group and due to aging, senile ptosis can occur. Other conditions like congenital ptosis or a case of third nerve palsy during testing may produce a superior artefact of the visual field.13-15 Ptosis produces an artefact with sudden reduction in sensitivity from normal values to 0 decibels in the superior field of vision.16 This may appear in both eyes if bilateral or just one eye, or the second eye tested if fatigue related. The lid can be taped open to prevent this (Figs 5.7 and 5.8).

Use of Miotics

Even use of miotic therapy can lead to a defective field loss involving the peripheral field hence there is a problem when assessing patients on miotics.5-8 Miosis depresses the visual field and can exaggerate the size and depth of existing visual field defects. Pupil diameter less than 2 mm produces visual field loss, as pupil constriction dims both the intensity of the stimulus and the intensity of the background.

Low Reliability Indices

Reliability indices are important factors to be considered for the interpretation of the visual field. However, such indices may on occasion be misleading.
Chapter 5 Pearls and Pitfalls in Perimetry

Fig. 5.8A

Single Field Analysis

Central 24-2 Threshold Test

Name:
ID:

Eye: Right
DOB:

Fixation Monitor: Blind Spot
Fixation Target: Central
Fixation Losses: 1/15
False POS Errors: 3%
False NEG Errors: 2%
Test Duration: 07:18

Stimulus: III. White
Background: 31.5 ASB
Strategy: SITA-Standard
Pupil Diameter:
Visual Acuity: 20/20
RX: +5.00 DS DC X
Date: 28-03-2012
Time: 11:24 AM
Age: 50

Fovea: 25 dB

GHT
Outside Normal Limits

VFI 86%

MD -5.78 dB P < 0.5%
PSD 5.83 dB P < 0.5%

© 2010 Carl Zeiss Meditec
HFA II 720-8247-4.2/5.0
Figs 5.8A and B: Superior visual field defect in a patient with ptosis and visual fields of the same patient in the same sitting, after taping the upper lid.
Fixation instability may certainly occur with poor fixation, but in addition, fixation instability may occur because of an ill-defined blind spot, presence of nystagmus or head movement during the test. These factors can be accounted for and, in fact, the visual field result is often reliable in many of these instances, particularly if the patient has been visually observed in addition to the catch trials.

Some reliability problems may relate to false negative responses. Throughout the test, a stimulus is projected at a level above threshold at a point which has already had a positive response to a certain decibel value. The patient should therefore respond to this; however, if there is no response, this is recorded as a false negative. Repeated high false negative responses have been found in patients already with visual field defects rather than normals, providing further evidence that false negative responses are more indicative of true defects than of poor patient reliability.

High false negative scores may be seen in patients with early onset of visual loss, as there may be relative scotomas with varying visual responses in this area. High false negative scores may also be a sign of fatigue and allowing the patient a break during the test may alleviate this problem.

During the test, the projection device is at times moved, or clicks without presenting a stimulus. Should the patient respond despite the absence of a stimulus, this is recorded as a false positive. A high false positive score is often seen in ‘trigger happy’ patients who press the response button frequently despite not seeing stimuli. These patients also continue to respond to actual stimuli, with the result that stimuli are presented at consecutively higher sensitivities. This will continue beyond the upper limit of 51 decibels if the patient continues to press the response button. The mean deviation value shifts well into the positive area, producing artificial defects in the pattern deviation. Abnormally high sensitivity decibel values are thus achieved and visual field results are therefore unreliable.

Lens Rim Defects

Poorly positioned lenses often interfere with visual perception. Visual field defects related to a lens artefact are usually located between 25 and 30 degrees. Where possible, it is advisable to use the patient’s own single lens prescription unless these are small frames. Otherwise, wide aperture lenses should be used with the eye positioned as close to the lens as possible. A give-away as to the presence of a lens rim defect is the sudden drop of sensitivity at the tested point to less than 0 decibels where neighbouring points closer to fixation do not show such a drop in sensitivity.

Observer Interpretation

When interpreting the printout of the results, it may be tempting to interpret the grayscale only as this provides an immediate view of the visual field. However, by interpreting the grayscale only, some areas of localized loss in the visual field may not be noted where there is diffuse visual loss also, and further progression of an existing visual field defect may not be identified. A true indication of the extent of loss is not therefore obtained. Occasionally, interpretation of the grayscale only results in the false diagnosis of progressive visual field loss. It can be related to the use of a new printer ribbon/cartridge where the quality of the grayscale print is darker with the new cartridge, but the probability plots clearly indicate the same extent of visual loss.

Points to Remember

- Successful communication between perimetrist and patient are of utmost importance
- The patient needs to be comfortably and properly positioned. Activate the forehead rest alarm
- Comments by the operator on patient performance and accompanying circumstances are useful for interpretation
- Potential operator errors are listed in the field analyser manual and should be reviewed by the technician from time-to-time
- The greyscale is of limited use but distinctive patterns such as the Clover leaf suggest that test data is not reliable
- The foveal threshold measurement option should be switched on
- Use of the diamond fixation targets can help obtain reliable fields in patients with central vision defects (e.g. from macular degeneration)
- “Baseline fields” should be established as soon as possible and updated as needed
- Always consider the complete clinical picture including the role of coexisting conditions. Never interpret the visual fields in isolation.

References

