Dedicated to

Where would I be without you?
Nowhere.

To Mom and Dad:
It’s impossible to thank you adequately
for everything you’ve done for me.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Basic Principles of Ophthalmic Surgery</td>
<td>Parul Ichhpujani</td>
</tr>
<tr>
<td>Section 2</td>
<td>Cataract Surgery</td>
<td>Alan S Crandall</td>
</tr>
<tr>
<td>Section 3</td>
<td>Corneal Surgery</td>
<td>Walter E Beebe</td>
</tr>
<tr>
<td>Section 4</td>
<td>Vitreoretinal Surgery</td>
<td>Allen Ho, Sunir J. Garg</td>
</tr>
<tr>
<td>Section 5</td>
<td>Glaucoma Surgery</td>
<td>Ronald Leigh Fellman, Davinder S Grover</td>
</tr>
<tr>
<td>Section 6</td>
<td>Oculoplastic, Orbital, and Lacrimal Surgery</td>
<td>Santosh G Honavar</td>
</tr>
<tr>
<td>Section 7</td>
<td>Oncology Surgeries</td>
<td>Bertil Damato</td>
</tr>
<tr>
<td>Section 8</td>
<td>Extraocular Muscle Surgery</td>
<td>Aparna Ramasubramanian, Deborah K Vanderveen</td>
</tr>
<tr>
<td>Section 9</td>
<td>Open Globe Injuries</td>
<td>Rupesh Agrawal</td>
</tr>
<tr>
<td>Section 10</td>
<td>The Practice of Ophthalmic Surgery</td>
<td>George L Spaeth</td>
</tr>
</tbody>
</table>
Contributors

Jean-Paul Abboud MD PhD
Ophthalmologist
San Diego, California, USA

Nathan Abraham MS
Department of Ophthalmology
Keck School of Medicine of USC
Los Angeles, California, USA

Isabelle Aerts MD
Pediatric Department
CLCC Institut Curie
Paris, France

Rupesh Agrawal FRCS FAMS MMed
Associate Consultant
National Healthcare Group Eye Institute
Tan Tock Seng Hospital
Singapore

Mary Anne Ahluwalia DO
Chief Resident
Department of Ophthalmology
Oklahoma State University
Tulsa, Oklahoma, USA

Baseer U Ahmad MD
Vitreoretinal Fellow
The Retina Institute
St. Louis, Missouri, USA

Iqbal Ike K Ahmed MD
Assistant Professor
Department of Ophthalmology
University of Toronto
Toronto, Ontario, Canada

Oscar Albis-Donado MD
Professor
Department of Glaucoma
Instituto Mexicano de Oftalmologia
Queretaro, Queretaro, Mexico

Marcus Ang MBBS MCI FRCSED
Consultant
Cornea and External Eye Diseases Service
Singapore National Eye Centre
Singapore

Tin Aung FRCS (Ed) PhD
Professor
Department of Ophthalmology
Yong Loo Lin School of Medicine
National University of Singapore
Singapore

Augusto Azuara-Blanco PhD FRCS(Ed) FRCOphth
Professor
School of Medicine, Dentistry and Biomedical Sciences
Queen’s University Belfast
Belfast, UK

Samuel Baharestani MD
Attending Oculoplastic Surgeon
North Shore Eye Care
Smithtown, New York, USA

Sally L Baxter MD
University of California
San Diego, California, USA

Nicholas P Bell MD
A.G. McNeese, Jr. Professor of Ophthalmology
Clinical Associate Professor
Ruib Department of Ophthalmology and Visual Science
The University of Texas Medical School at Houston
Robert Cizik Eye Clinic
Chief of Ophthalmology Service
Lyndon B. Johnson General Hospital
Houston, Texas, USA

Shibal Bhartiya MD
Research Associate
Dr RP Center for Ophthalmic Sciences
All India Institute of Medical Sciences
New Delhi, India

Christopher J Brady MD
Retina Fellow
Department of Ophthalmology
Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Cat Nguyen Burkat MD FACS
Faculty
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin, USA

Sonia Callejo MD PhD
Montreal General Hospital
Montreal, Quebec, Canada

Giovanna Casale-Vargas MD
Asociacion Para Evitar La Ceguera En Mexico
Guadalupe, Zacatecas
Mexico

Nathalie Cassoux
Oftalmologia (Tratamiento del Glaucoma)
Zacatecas, Zacatecas, Mexico

Clara C Chan MD FRSC FACS
Faculty
Department of Ophthalmology and Vision Sciences
University of Toronto
Toronto, Ontario, Canada

Anny Cheng MD
Ocular Surface Center and Tissue Tech
Miami, Florida, USA
Contributors

Adrian T Fung MD MBBS MMed FRANZCO
Australian School of Advanced Medicine
Macquarie University Hospital
Save Sight Institute
Central Clinical School
University of Sydney, Sydney, Australia

Sunir J Garg MD FACS
The Retina Service of Wills Eye Hospital
Associate Professor of Ophthalmology
Thomas Jefferson University
Philadelphia, Pennsylvania, USA

Steven J Gedde MD
Professor
Department of Ophthalmology
University of Miami
Miller School of Medicine
Miami, Florida, USA

Shubhra Goel MD
Ophthalmic and Facial Plastic Surgeon
Ocular Oncology Service
Centre for Sight, Banjara Hills
Hyderabad, India

Roger A Goldberg MD MBA
Vitreoretinal Surgeon
Walnut Creek, California, USA

Patrick Gooi MD FRCS
Department of Ophthalmology
University of Toronto
Toronto, Ontario, Canada

Carl Groenewald MD
Consultant Ophthalmologist
St. Paul’s Eye Unit
Royal Liverpool University Hospital
Liverpool, UK

Davinder S Grover MD MPH
Attending Clinician and Surgeon
Glaucoma Associates of Texas
Clinical Assistant Professor
Department of Ophthalmology
University of Texas, Southwestern Medical School
Dallas, Texas, USA

Omesh P Gupta MD MBA
Assistant Professor
Department of Ophthalmology
Thomas Jefferson University and Wills Eye Hospital Retina Service
Philadelphia, PA, USA

Roshni Gupta FRCS
Consultant and Head
Ophthalmic Plastics, Orbital Surgery
Ocular Oncology
Narayana Nethralaya Eye Hospital
Bengaluru, India

Doris Hadjistilianou MD
Head, Unit of Ophthalmic Oncology
Santa Maria alle Scotte Clinic
Siena, Italy

Mark S Hansen MD
Duke Eye Center
Durham, North Carolina, USA

A ravind Haripriya MD
Chief, Cataract and IOL Services
A ravind Eye Hospital
Madurai, Tamil Nadu, India

Heinrich Heimann MD
Professor
Liverpool Ocular Oncology Centre
The Royal Liverpool Hospital
Liverpool, UK

Christoph Hintschich MD
Head of Oculoplastics and
Orbital Service
Munich University Eye Hospital
Munich, Germany

Edward J Holland MD
Director
Cornea Services
Cincinnati Eye Institute
Professor of Clinical Ophthalmology
University of Cincinnati
Cincinnati, Ohio, USA

Santosh G Honavar MD FRCS
Ocular Oncology Service
Centre for Sight Superspeciality
Eye Hospital
Hyderabad, Andhra Pradesh, India

Jason Hsu MD
Assistant Professor of Ophthalmology
Thomas Jefferson University
The Retina Service of
Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Parul Ichhpujani MD MBA (HA)
Assistant Professor
Department of Ophthalmology
Government Medical College and Hospital
Chandigarh, India

Andrew G Iwach MD
Associate Clinical Professor of Ophthalmology
University of California, San Francisco
San Francisco, California, USA

Richard S Kaiser MD
Mid Atlantic Retina
Lansdale, Pennsylvania, USA

Douglas I Katz MD
Professor of Neurology
Brantree Rehabilitation Hospital
Brantree, Massachusetts, USA
Department of Neurology
Boston University Medical Center
Boston, Massachusetts, USA

Melanie Kazlas MD
Instructor
Department of Ophthalmology
Harvard Medical School
Boston, Massachusetts, USA

Nihal Kenawy MD FRCOphth
Doctor
Liverpool Ocular Oncology Centre
Royal Liverpool University Hospital
Liverpool, UK

Don O Kikkawa MD
Professor of Clinical Ophthalmology
Vice-Chairman
Department of Ophthalmology
Shiley Eye Center
University of California San Diego
San Diego, California, USA

Charles Kim MD
Fellow, Ophthalmic Plastic and Reconstructive Surgery
Wills Eye Hospital
Philadelphia, Pennsylvania, USA
Terry Kim MD
Cornea Specialist
Duke Medicine
Durham, North Carolina, USA

Lazaros Konstantinidis MD
Consultant Ophthalmic Surgeon
Jules Gonin University Eye Hospital
Lausanne, Switzerland

Bobby S Korn MD PhD FACS
Associate Professor of Clinical Ophthalmology
Board Certification in Ophthalmology Fellowship in Ophthalmic Plastic and Reconstructive Surgery
Shiley Eye Center
University of California San Diego
San Diego, California, USA

Livia Lumbroso Le-Rouic
The Eye Cancer Network
New York, New York, USA

Bradford W Lee MD
Shiley Eye Center
La Jolla, California, USA

Thomas C Lee MD
Pediatric Retina Surgeon
Appointed Division Head for The Vision Center at Children's Hospital
Los Angeles
Los Angeles, California, USA

Richard A Lehrer MD
Assistant Clinical Professor
Department of Ophthalmology
NE Ohio College of Medicine
Rootstown, Ohio, USA

Gary J Leff Jr, MD
Ophthalmologist
Weill Cornell Physicians
New York, New York, USA

Richard L Levy MD
Assistant Professor
Department of Ophthalmology
Weill Cornell Medical College
New York, New York, USA

Christine Levy-Gabriel MD
Department of Ophthalmology
Institut Curie
Paris, France

Andre S Litwin FRCPophth
Corneoplastic Unit
Queen Victoria Hospital NHS Foundation Trust
East Grinstead, West Sussex, UK

Nikolas JS London MD
Retina Consultants San Diego
La Jolla, California, USA

Taylor Lukasik
Medical Student
Royal College of Surgeons, Ireland
Dublin, Ireland

Ashley Lundin MD
Resident
Department of Ophthalmology and Visual Sciences
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin, USA

Joseph I Maguire MD
Assistant Professor
Department of Ophthalmology
Wills Eye Hospital
Thomas Jefferson University Hospital
Philadelphia, Pennsylvania, USA

Raman Malhotra FRCPophth
Corneoplastic Unit
Queen Victoria Hospital
East Grinstead, West Sussex, UK

Ashwin Mallipatna MBBS MS DNB
Consultant
Department of Pediatric Ophthalmology and Strabismus
Narayana Nethralaya
Bengaluru, Karnataka, India

Fairuz P Manjanadavida MD
Consultant, Ophthalmic Plastic Surgery
Orbit and Ocular Oncology
C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China

Kimberly A Mankiewicz PhD
Technical Writer III
Ruiz Department of Ophthalmology and Visual Science
The University of Texas Medical School at Houston
Houston, Texas, USA

Vikas Menon DNB
Consultant
Department of Oculoplasty and Ocular Oncology
Center for Sight
New Delhi, India

John R Minarcik MD
Commander, Medical Corps, USN
Department of Ophthalmology
Vitreoretinal Service
Fort Belvoir Community Hospital
Fort Belvoir, Virginia, USA

Marlene R Moster MD
Professor of Ophthalmology
Thomas Jefferson University
School of Medicine
Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Francis Munier MD
Jules-Gonin Eye Hospital
Lausanne, France

Sudha Nallasamy MD
Kellogg Eye Center
Ann Arbor, Michigan, USA

Jeffrey Nerad MD
Ophthalmic Plastic and Reconstructive Surgery
Cincinnati Eye Institute
Cincinnati, Ohio, USA

Donna Nguyen MD
Glaucoma Fellow
Ruiz Department of Ophthalmology and Visual Science
The University of Texas Medical School at Houston
Robert Cizik Eye Clinic
Houston, Texas, USA
Contributors

Bharti Nihalani-Gangwani MD
Staff Physician, Department of Pediatric Ophthalmology and Strabismus
Boston Children’s Hospital
Harvard Medical School
Boston, Massachusetts, USA

Monisha E Nongpiur MD
Singapore Eye Research Institute
Singapore

Mohammed Hosein Nowroozzadeh MD
Assistant Professor
Penstchi Eye Research Center
Department of Ophthalmology
Shiraz University of Medical Sciences
Shiraz, Iran

Alexander K Nugent MD
Glaucoma Fellow
Doheny Eye Institute
UCLA Department of Ophthalmology
Los Angeles, California, USA

Brett O’Donnell MD
Ophthalmic Plastic and Reconstructive Surgeon
North Shore Medical Centre
Leonards, Australia

Jane Olver MD
Clinica London
London, UK

Sotiria Palioura MD PhD
Ophthalmology Resident
Department of Ophthalmology
Massachusetts Eye and Ear Infirmary
Harvard Medical School
Boston, Massachusetts, USA

Joseph F Panarelli MD
Assistant Professor
Department of Ophthalmology
Icahn School of Medicine at Mount Sinai
New York, New York, USA

Jonathan Pargament MD
Department of Ophthalmology
University of Cincinnati
Cincinnati, Ohio, USA

Carl Park MD
Assistant Surgeon, Retina Service
Wills Eye Hospital
Clinical Assistant Professor of Ophthalmology
Thomas Jefferson University
Philadelphia, Pennsylvania, USA

Aparna Ramasubramanian MD
Assistant Professor
Moran Eye Center
University of Utah
Salt Lake City, Utah, USA

Naz Raof BA BM ChB
Department of Ophthalmology
Royal Hallamshire Hospital
Sheffield, UK

M Reza Razeghinejad MD
Professor, Department of Ophthalmology
Shiraz University of Medical Sciences
Shiraz, Iran

Carl D Regillo MD FACS
Professor of Ophthalmology
Director, Wills Eye Hospital Retina Service
Thomas Jefferson University
Philadelphia, Pennsylvania, USA

Daniel B Rootman MD MS
Doheny Eye Center University of California Los Angeles—Pasadena
Pasadena, California, USA

Geoffrey E Rose Bsc MBBS MS DSc MRCP FRCS FRCOphth
Professor, Orbit and Adnexal Service
Moorfields Eye Hospital
London, UK

Iwona Rospond-Kubiak MD PhD
Ocular Oncology Service
Department of Ophthalmology
Poznań University of Medical Sciences
Poznań, Poland

Sanduk Ruit MD
Professor
Tilganga Institute of Ophthalmology
Gaushala, Bagmati Bridge
Kathmandu, Nepal

Andrea Russo MD
University Cardiology Group
Cherry Hill, New Jersey, USA

Steven J Ryder MD
Ophthalmology Resident
Department of Ophthalmology
Weill Cornell Medical Center
New York, New York, USA
Mohammad Ali A Sadiq MD
Assistant Professor
Ophthalmology
King Edward Medical University
Lahore, Pakistan

Sachin Salvi FRCophth
Department of Ophthalmology
Royal Hallamshire Hospital
Sheffield, UK

Jonathan H Salvin MD
Nemours Pediatric Specialists
Alfred I. duPont Hospital for Children
Wilmington, Delaware, USA

Sachin Salvi FRCophth
Department of Ophthalmology
Royal Hallamshire Hospital
Sheffield, UK

Gaurav Shah MD
Fellowship Director, Attending Surgeon
The Retina Institute
St. Louis, Missouri, USA

Rajiv Shah MD
Assistant Professor
Department of Ophthalmology
Wayne State University School of Medicine
Kresge Eye Institute
Detroit, Michigan, USA

Sajani Shah MD
Surgeon
Assistant Professor
Tufts University School of Medicine
Boston, Massachusetts, USA

Hosam Sheha MD PhD
Ocular Surface Center and Tissue Tech
Miami, Florida, USA

Bradley T Smith MD
Center for Advanced Medicine at
Barnes Jewish Hospital
St. Louis, Missouri, USA

Scott D Smith MD
Ophthalmologist
Cleveland Clinic
Cleveland, Ohio, USA

Abhilasha Solanki MD
Harvard University
Boston, Massachusetts, USA

Marc J Spirn MD
Ophthalmologist
Thomas Jefferson University
Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Paul J Stewart MD
Ophthalmology
Eye Center of Texas
Pasadena, Texas, USA

Michael D Straiko MD
Associate Director of Corneal Services
Dever’s Eye Institute
Portland, Oregon, USA

Oana Stirbu MD FEBO
Consultant Ophthalmologist
Glaucome Service
Institut Comtal d’Oftalmologia ICO
Barcelona, Spain

George L Spaeth MD
Louis J Esposito Research Professor
Wills Eye Hospital/ Jefferson Medical College
Director, Medical Research and Education
Glaucome Service, Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Gangadhara Sundar DO FRCSEd FAMS
Head and Senior Consultant for Oculoplastic Services
Assistant Professor
Department of Ophthalmology
National University of Singapore
Singapore

Geoffrey Tabin MD
Moran Eye Center
University of Utah Health Care
Salt Lake City, Utah, USA

Julia C Talajic MD MCM
Clinical Associate Professor
Department of Ophthalmology
University of Montreal
Montreal, Quebec, Canada

Donald TH Tan FRCS(G) FRCS(Ed) FRCophth
FAMS
Professor
Medical Director
Singapore National Eye Centre
Singapore

Marie-José Tassignon MD Phd Febo
Professor
Department of Ophthalmology
University of Antwerp and
Antwerp University Hospital
Edegem, Antwerp, Belgium
Contributors

Mark A Terry MD
Corneal Services
Devers Eye Institute
Portland, Oregon, USA

Aristomenis Thanos MD
Resident in Ophthalmology
Department of Ophthalmology
Harvard University
Boston, Massachusetts, USA

Benjamin Thomas MD
General Adult Neurologist
Board Certified in Neurology
Wilson Neurology
Wilson, North Carolina, USA

Matthew Thomas MD
Ophthalmology
Retina Institute
St. Louis, Missouri, USA

Sean Tighe MS
Scientist
Tissue Tech Inc
Miami, Florida, USA

Andrew Tsai MBBS MMed (Ophth)
Ophthalmology
Singapore National Eye Centre
Singapore

Scheffer G Tseng MD PhD
Director, Ocular Surface Center
Miami, Florida, USA

Nicole C Tsim MD MBBS
Department of Ophthalmology and Visual Sciences
Chinese University of Hong Kong
Hong Kong

James Vander MD
Clinical Professor of Ophthalmology
Thomas Jefferson University
School of Medicine
Attending Surgeon
Wills Eye Hospital
Philadelphia, Pennsylvania, USA

Deborah K VanderVeen MD
Associate Professor
Department of Ophthalmology
Harvard Medical School
Boston, Massachusetts, USA

Woodford S Van Meter MD
Ophthalmology
University of Kentucky
Lexington, Kentucky, USA

Abhay R Vasavada MD MS FRCS (England)
Director
Iladevi Cataract and IOL Research Centre
Raghubhad Eye Hospital
Ahmedabad, India

G Atma Vemulakonda MD
Associate Professor
Department of Ophthalmology
University of Washington
Seattle, Washington, USA

Renganaraj Venkatesh MD
Chief Medical Officer
Aravind Eye Hospital
Pondicherry, India

David H Verity MD
Adnexal Department
Moorfields Eye Hospital
London, UK

Steven D Vold MD
Vold Vision
Fayetteville, Arkansas, USA

Charles H Weber MD
The Eye Institute of Utah
Salt Lake City, Utah, USA

Eric Weichel MD
Assistant Clinical Professor
Georgetown University
Washington, DC, USA

Andre J Witkin MD
Assistant Professor
Department of Ophthalmology
Tufts University School of Medicine
Boston, Massachusetts, USA

S Chien Wong MD
Ophthalmology
Los Angeles, California, USA

Marielle P Young MD
Assistant Professor
Department of Ophthalmology
University of Utah
Moran Eye Center
Salt Lake City, Utah, USA

Martin Zehetmayer MD
Professor (extraord.)
Department of Ophthalmology
University of Vienna
Vienna, Austria

Christopher I Zoumalan MD FACS
Clinical Assistant Professor
Department of Ophthalmology
Keck School of Medicine of USC
Los Angeles, California, USA
Preface

The earliest documented reference to the most commonly performed ocular surgery, cataract surgery, has been found in Sanskrit manuscripts dating from the fifth century BC. It was attributed to the Indian surgeon, Susruta. According to Herodotus, the historian of ancient Greece, surgery was practiced by “chirorgos”, which combines the words “hand” and “work” and means “surgeon”. The early 17th century BC papyrus papers of Edwin Smith also mentioned advanced level of ophthalmic surgery practiced by Egyptians. The mid-nineteenth century saw major developments of surgical practices inherited from the ancient masters. The twentieth century was a century of dramatic advances. Surgeons across the globe have been constantly putting their creative thinking into action for devising novel ways for cutting, reshaping, reforming, bypassing, and fixing ocular anomalies.

This volume is a comprehensive textbook-atlas. It has a highly visual format that includes illustrations and images, as well as features that align with current ophthalmology training. The content has been organized in such a way to facilitate quick access of information, with abundant bullet point lists and boxes, and fewer denser passages of text than found in a traditional textbook. Each section is color-coded for easy cross-referencing and “navigation”. In all the sections, operative techniques and surgical strategies are explained step-by-step to increase surgical knowledge and anatomy. A section on ethics and medicolegal aspects of surgical practice is an additional highlight of the book.

This book is the product of almost three years of hard work. It has a global perspective, with the participation of renowned international contributors. It includes a variety of topics of interest to a wide-ranging audience, including operating in areas with limited resources. It has been an honor to work with the section editors and contributors of this book.

I would especially like to thank Mr Joe Rusko and Mr Marco Ulloa, the publishers, for their expert assistance in all the issues concerning this book. I also thank Ms Chetna Malhotra Vohra (Associate Director), for her useful assistance. My gratitude also goes to the technical editors for arranging the book in a uniform format. I am thankful to Jaypee Brothers Medical Publishers (P) Ltd. New Delhi, India, for undertaking this mission.

Newer surgical advances challenge the existing trends. The future of ophthalmic surgery seems as dynamic as its history. We are grateful to all the great ophthalmic surgeons of the past and look forward to the operating room of the future through learning new techniques, understanding and adapting to new technologies, maintaining surgical competencies, and applying the same to our practices.

Thanks for choosing this volume for your collection. If you have any comments, feel free to email me at the address below.

Parul Ichhpujani
parul77@rediffmail.com
A book of this nature requires the cooperation of many different authors. I am grateful to all the contributors of the book, but some stand out, going well above and beyond the call of duty.

First, I wish to earnestly thank Dr George L Spaeth, my co-editor and Louis J Esposito Research Professor at the Wills Eye Institute, Philadelphia, Pennsylvania, USA. He has been my mentor and has been quite instrumental in adding a unique dimension to my practice of Ophthalmology. I was quite honored, when he asked me to be the chief editor.

Dr Aparna Ramasubramanian for being a great friend, helping in recommending other potential authors and editing her section as per the timeline.

The staff of the Philadelphia office, USA, bent over backwards to make the production of this manuscript pleasant, professional, and fast.
Contents

Section 1: Basic Principles of Ophthalmic Surgery

Parul Ichhpujani

1. **Asepsis in the Operating Room**
 - *Oana Stirbu*
 - Patient Care 3
 - Personnel Discipline 3
 - OR Complex 5

2. **Anesthesia for Ophthalmic Surgery**
 - *Abhilasha Solanki*
 - Relevant Anatomy, Physiology, and Pharmacology 11

3. **Operating Microscopes and Surgical Loupes**
 - *Mohammad Hosein Nowroozzadeh, M Reza Razeghinejad*
 - Operating Microscopes 17
 - Surgical Loupes 23

4. **Sutures and Needles in Ophthalmology**
 - *Oscar Albis-Donado, Shibal Bhartiya, Giovanna Casale-Vargas*
 - Sutures 25
 - Needles 27
 - Alternative Materials and Specific Sutures for Tissue Approximation 29

5. **Suturing and Knot Tying**
 - *Ghasem Fakhraie*
 - Basic Principles of Suture Placement 31
 - Simple Square Knot 32
 - Suturing Techniques 33

6. **Hemostasis**
 - *Colin I Clement, Adrian T Fung, Brett O'Donnell*
 - Factors Contributing to Intraoperative Bleeding 39
 - Planning Surgery 40
 - Intraoperative Management of Hemostasis 41
 - Postoperative Management 43

7. **Surgical Field: Asepsis and Preparation**
 - *Parul Ichhpujani, Shibal Bhartiya*
 - Antiseptic Agents 47
 - Preoperative Use of Topical Antibiotics 48
 - Preparation of the Surgical Field 48
 - Draping 48
Section 2: Cataract Surgery

Alan S Crandall

8. **Introduction**
 - Alan S Crandall

9. **Technique for a Routine Cataract Surgery**
 - Alan S Crandall
 - Indications: 57
 - Contraindications: 57
 - Preoperative Evaluation: 57
 - Anesthesia: 57
 - Surgical Technique: 59

10. **Manual Small Incision Cataract Surgery**
 - Rengaraj Venkatesh, Geoffrey Tabin, Michael Feilmeier, Benjamin Thomas, Sanduk Ruit
 - General Surgical Technique of MSICS: 70
 - Outcomes: Phacoemulsification Versus MSICS: 77

11. **Capsular Tension Segments**
 - Patrick Gooi, Taylor Lukasik, Iqbal Ike K Ahmed
 - Preoperative Considerations: 80
 - Avoiding Vitreous and a Vitrectomy: 80
 - Surgical Technique: 80
 - Postoperative Management: 84
 - Advanced Anterior Segment Reconstruction: 84

12. **Femtosecond Laser Cataract Surgery**
 - Robert Cionni, Charles H Weber
 - Indications: 87
 - Contraindications: 87
 - Surgical Technique: 87
 - Mechanism of Action: 91
 - Postoperative Care: 91
 - Specific Instrumentation: 91
 - Complications: 91
 - Surgical Outcomes: Scientific Evidence: 91
 - Place of the Technique in Surgical Armamentarium: 92

13. **Pediatric Cataract**
 - Abhay R Vasavada, Sajani Shah
 - Pediatric Cataract: 95
 - Timing of Surgery: 95
 - Preoperative Evaluation: 95
 - Surgical Technique: 96
 - Complications of Pediatric Cataract Surgery: 98
 - Newer Approaches: 99

14. **Phacoemulsification in Hard Cataracts**
 - Aravind Haripriya, Rengaraj Venkatesh
 - Challenges in Handling Brown Cataracts: 101
 - Anesthesia: 102
 - Prerequisites: 102
 - Phacoemulsification of a Brown Cataract: 103
15. How to Successfully Perform the Bag-in-the-Lens Technique in Cataract Surgery?
Marie-José Tassignon, Sorcha Ni Dhubhghaill

- General Indications 107
- Special Indications 107
- Surgical Technique 107
- Mechanism of Action 110
- Postoperative Care 111
- Specific Instrumentation 111
- Complications 112
- Surgical Outcomes: Scientific Evidence 112
- Place of the Technique in the Surgical Armamentarium 113

Section 3: Corneal Surgery
Walter E Beebe

16. Penetrating Keratoplasty
Lucy Eakle Franklin, Douglas I Katz, Woodford S Van Meter

- Indications 117
- Contraindications 118
- Specific Instrumentation 118
- Surgical Technique 120
- Postoperative Care 125
- Complications 127

17. An Overview of Endothelial Keratoplasty
Julia C Talajic, Michael D Straiko, Mark A Terry

- Advantages of Endothelial Keratoplasty 131
- History and Overview of EK Techniques 131
- Indications for EK 133
- Contraindications to EK 133
- Surgical Technique: DSAEK 133
- Surgical Technique: DMEK 136
- Complications After EK 138
- Long-Term Outcomes 140
- Future Horizons for Endothelial Replacement 141

18. Anterior Lamellar Keratoplasty
Donald TH Tan, Marcus Ang

- Contraindications 144
- Surgical Techniques 144
- Complications 150
- Imaging in ALK Surgery 151

19. Keratoprosthesis
Sotiria Palioura, Christina R Prescott, James Chodosh

- Keratoprosthesis Designs 155
- Indications 156
- Contraindications 157
- Surgical Technique 158
- Postoperative Care 160
20. Amniotic Membrane Transplantation 167
 Hosam Sheha, Sean Tighe, Anny Cheng, Scheffer C G Tseng
 • Amniotic Membrane as a Biological Bandage 167
 • Indications 167
 • Contraindications 168
 • Procedures 168
 • Clinical Applications and Outcomes 168
 • Complications and Limitations 175
21. Tissue Adhesives in Ophthalmic Surgery 177
 Mark S Hansen, Terry Kim
 • Ophthalmic Uses of Tissue Adhesives 177
 • Types of Tissue Adhesives 177
 • Other Tissue Adhesives in Development 179
22. Ocular Surface Reconstruction and Limbal Stem Cell Transplantation 183
 Clara C Chan, Edward J Holland
 • Diagnosis of LSCD 183
 • Preoperative Staging of Ocular Surface Disease 184
 • Classification of Ocular Surface Transplantation Techniques 184
 • Immunosuppression in Limbal Stem Cell Transplantation 190
 • Keratoplasty After Limbal Stem Cell Transplantation 191
Section 4: Vitreoretinal Surgery
Allen Ho, Sunir J Garg
23. Principles and Techniques of Vitreoretinal Surgery 199
 Rajiv Shah, Omesh P Gupta
 • Indications 200
 • Clinical Evaluation 200
 • Contraindications 201
 • Surgical Technique 201
 • Mechanism of Action 205
 • Surgical Outcomes: Scientific Evidence 205
 • Place of the Technique in Surgical Armamentarium 205
24. Retinal Detachment Repair: Scleral Buckling Procedures 209
 Baseer U Ahmad, Gaurav Shah, Nicholas Engelbrecht, Matthew Thomas, Bradley T Smith
 • Indications 209
 • Contraindications 209
 • Surgical Technique 209
 • Mechanism of Action 222
 • Postoperative Care 222
 • Specific Instrumentation 223
 • Potential Complications 223
 • Surgical Outcomes: Scientific Evidence/Meta-Analysis 224
 • Place of the Technique in Surgical Armamentarium 224
25. Pneumatic Retinopexy

Nikolas JS London

- Indications 229
- Expanded Indications 229
- Contraindications 229
- Surgical Technique 232
- Mechanism of Action 235
- Postoperative Care 235
- Specific Instrumentation 236
- Potential Complications 236
- Surgical Outcomes: Scientific Evidence/Meta-Analysis 236
- Place of the Technique in Surgical Armamentarium 236

26. Pars Plana Vitrectomy for Rhegmatogenous Retinal Detachment

Christopher J Brady, Richard S Kaiser

- Indications 239
- Contraindications 239
- Surgical Technique 239
- Combined Scleral Buckle PPV 242
- Proliferative Vitreoretinopathy 242
- Mechanism of Action 244
- Postoperative Care 244
- Specific Instrumentation 244
- Complications 244
- Surgical Outcomes: Scientific Evidence/Meta-Analysis 244
- Place of the Technique in Surgical Armamentarium 245

27. Surgery for Submacular Hemorrhage due to Neovascular Age-related Macular Degeneration

Christopher J Brady, Carl D Regillo

- Indications 247
- Contraindications 249
- Surgical Technique 249
- Mechanism of Action 250
- Postoperative Care 250
- Specific Instrumentation 250
- Complications 250
- Surgical Outcomes: Scientific Evidence/Meta-Analysis 252
- Place of the Technique in Surgical Armamentarium 252

28. Macular Holes and Management

Rajiv Shah, Carl Park

- Indications 253
- Clinical Evaluation 256
- Contraindications 257
- Treatment Technique 257
- Mechanism of Action 261
- Postoperative Care 261
- Complications 261
- Surgical Outcomes: Scientific Evidence 262
- Place of the Technique in Surgical Armamentarium 262
29. Epiretinal Membranes
 Mitchell S Fineman
 • Indications 266
 • Contraindications 266
 • Surgical Technique 266
 • Mechanism of Action 269
 • Postoperative Care 269
 • Specific Instrumentation 269
 • Complications 270
 • Surgical Outcomes 270
 • Place of the Technique in Surgical Armamentarium 271

30. Posteriorly Dislocated Retained Lens Material
 John D Pitcher III, Marc J Spirn
 • Indications 273
 • Contraindications 273
 • Surgical Technique 273
 • Mechanism of Action 276
 • Surgical Outcomes: Scientific Evidence 277
 • Place of the Technique in Surgical Armamentarium 277

31. Surgical Repair of Choroidal Detachment
 Andre J Witkin
 • Indications 279
 • Contraindications 280
 • Mechanism of Action 283
 • Postoperative Care 283
 • Specific Instrumentation 283
 • Complications 283
 • Surgical Outcomes: Scientific Evidence/Meta-Analysis 283
 • Place of the Technique in Surgical Armamentarium 284

32. Endophthalmitis
 Michael Dollin, Jason Hsu
 • The Endophthalmitis Vitrectomy Study 285
 • Vitreous Tap and Inject 285
 • Vitrectomy 288
 • Workup for Endogenous Endophthalmitis 290

33. Vitreous Implants and Intravitreal Injection
 Roger A Goldberg, Chirag P Shah, Sunir J Garg
 • Indications 293
 • Contraindications 294
 • Surgical Technique 294
 • Mechanism of Action 296
 • Postoperative Care 296
 • Specific Instrumentation, Subject To Physician’s Preference 297
 • Complications 297
 • Surgical Outcomes: Scientific Evidence 297
 • Place of the Technique in Surgical Armamentarium 298
34. Techniques of Laser Photocoagulation in Diabetic Retinopathy

Joseph I Maguire

- Indications 301
- Contraindications 302
- Surgical Technique 302
- Postoperative Care 304
- Instrumentation 305
- Complications 305
- Surgical Outcomes: Scientific Evidence 305
- Place of the Technique in Surgical Armamentarium 306

35. Intraocular Foreign Bodies

John R Minarcik, Marcus Colyer, Eric Weichel

- Indications 307
- History and Examination 307
- Contraindications 307
- Surgical Technique 308
- Postoperative Care 311
- Instrumentation 311
- Complications 312
- Surgical Outcomes: Scientific Evidence 313

36. Diabetic Retinopathy and Its Management

Michael Dollin, James Vander

- Laser Photocoagulation for Diabetic Macular Edema 315
- Panretinal Photocoagulation 317
- Vitrectomy for Diabetic Retinopathy 318
- Complications 322

37. Endoscopic Vitrectomy

S Chien Wong, Emil Anthony T Say, Thomas C Lee

- Indications 325
- Contraindications 327
- Surgical Technique 327
- Mechanism of Action 330
- Postoperative Care 331
- Instrumentation 331
- Complications 331
- Surgical Outcomes: Scientific Evidence 331
- Place of the Technique in Surgical Armamentarium 333

38. Surgical Uveitis

Sal Potbandawalla, G Atma Vemulakonda

- Surgical Options/Indications/Techniques 335

Section 5: Glaucoma Surgery

Ronald Leigh Fellman, Davinder S Grover

39. Indications for Glaucoma Surgery

George L Spaeth
40. Guarded Filtration Surgery
 Marlene R Moster, Augusto Azuara-Blanco
 • Indications 347
 • Contraindications 347
 • Mechanism of Action 348
 • Surgical Technique 348
 • Postoperative Care 352
 • Specific Instrumentation 352
 • Complications of Filtration Surgery 353
 • Surgical Outcomes: Scientific Evidence/Meta-Analysis 353

41. Microincisional Glaucoma Surgery
 Steven D Vold, Mary Anne Ahluwalia
 • Subconjunctival Microstent 357
 • Contraindications 357
 • Mechanism of Action 358
 • Surgical Technique 358
 • Postoperative Care 359
 • Complications 360
 • Surgical Outcomes: Scientific Evidence/Meta-Analysis 360

42. Glaucoma Drainage Devices
 Joseph F Panarelli, Steven J Gedde
 • Contraindications 363
 • Mechanism of Action 363
 • Surgical Technique 363
 • Postoperative Care 366
 • Specific Instrumentation 366
 • Complications 367
 • Surgical Outcomes: Scientific Evidence 367
 • Place of the Technique in Surgical Armamentarium 368

43. Angle Surgery: Trabeculotomy and Goniotomy
 Ronald Leigh Fellman, Davinder S Grover
 • Indications 371
 • Contraindications 372
 • Surgical Techniques 372
 • Complications 381
 • Surgical Outcomes 381
 • Place of the Technique in Surgical Armamentarium 382

44. Complications of Glaucoma Surgery and their Management
 Sunita Radhakrishnan, Andrew G Iwach
 • Complications of Trabeculectomy 385
 • Postoperative Complications 385
 • Complications of Aqueous Drainage Devices 390

45. Laser Trabeculoplasty
 Fabiana Q Silva, Scott D Smith
 • Indications 395
 • Contraindications 395
 • Mechanism of Action 396
• Surgical Technique 396
• ALT 396
• SLT 396
• Postoperative Care 396
• Complications 397
• Surgical Outcomes: Scientific Evidence 397
• Place of the Technique in Surgical Armamentarium 397

46. Laser Peripheral Iridotomy and Iridoplasty 399
 Jocelyn L Chua, Monisha E Nongpiur, Andrew Tsai, Tin Aung

Laser Peripheral Iridotomy
• Indications 399

Laser Iridoplasty
• Indications 402
• Surgical Outcomes 403
• Place of the Technique in Surgical Armamentarium 404

47. Cyclophotocoagulation 407
 Donna Nguyen, Kimberly A Mankiewicz, Nicholas P Bell
• Indications 407
• Contraindications 408
• Mechanism of Action 408
• Specific Instrumentation 408
• Surgical Technique 409
• Postoperative Care 411
• Complications 411
• Surgical Outcomes 412

48. Endoscopic Cyclophotocoagulation: Limbal and Pars Plana Approaches 415
 Brian A Francis, Alexander K Nugent
• Patient Selection 415
• Indications 415
• Contraindications/Cautions 415
• Surgical Technique 416
• Mechanism of Action 417
• Postoperative Care 417
• Specific Instrumentation 417
• Complications 417
• Surgical Outcomes/Scientific Evidence and Meta-Analysis 418
• Place of the Technique in Surgical Armamentarium 419

49. Nonpenetrating Glaucoma Surgery 421
 Richard A Lehrer
• Indications 424
• Contraindications 424
• Technique 424
• Postoperative Care 429
• Specific Instrumentation 430
• Complications 430
• Surgical Outcomes: Scientific Evidence/Meta-Analyses 430
• Place of the Technique in Surgical Armamentarium 430
50. Anatomical and Radiological Considerations

Jonathan J Dutton
- Orbital Bones 435
- Muscles of Ocular Motility 440
- Motor Nerves of the Orbit 441
- Sensory Nerves of the Orbit 442
- Arterial Supply to the Orbit 443
- Venous Drainage from the Orbit 444

51. Basic Instrumentation and Techniques

Charles Kim, Gary J Lelli, Jr
- Oculoplastic Surgical Tray 447
- Incisions 448
- Tissue Dissection 448
- Exposure of the Surgical Field 449
- Hemostasis 449
- Suturing 450
- Soft Tissue Grafts 450
- Bone and Cartilage 451
- Orbital Implants 451
- Ptosis Surgery 452
- Canaliculac Laceration Repair 452
- Canaliculac Stents 452
- Lacrimal System Obstruction 453
- Endoscopic Surgery 453

52. Upper and Lower Eyelid Entropion

Christoph Hintschich
- Definition 455
- Classification of Entropion 455
- Anatomical Considerations 456
- Indications for Surgery 456
- Clinical Examination 456
- Anesthesia 456
- Lower Eyelid Entropion 456
- Upper Eyelid Entropion 466

53. Surgical Techniques for Upper and Lower Eyelid Ectropion

Steven M Couch, Philip L Custer
- Indications 471
- Contraindications 471
- Surgical Technique Defined by Etiology 471
- Postoperative Care 475
- Specific Instrumentation 475
- Complications 475
- Place of the Technique in Surgical Armamentarium 475
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.</td>
<td>Abnormalities of the Eyelashes</td>
<td>477-479</td>
</tr>
<tr>
<td>Alexander Foster, Bradford W Lee, Don O Kikkawa, Bobby S Korn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>• Contraindications</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>• Surgical Techniques</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>• Postoperative Care</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>• Complications</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>• Surgical Results: Scientific Evidence/Meta-Analysis</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>Management of Facial Palsy</td>
<td>481-489</td>
</tr>
<tr>
<td>Sally L Baxter, Richard L Scawn, Bobby S Korn, Don O Kikkawa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>• Contraindications</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>• Surgical Techniques and Mechanisms of Action</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>• Postoperative Care</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>• Complications</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>• Surgical Results and Decision Making</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>Eyelid Tumor Surgery</td>
<td>491-495</td>
</tr>
<tr>
<td>Roshmi Gupta, Santosh G Honavar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Surgical Techniques</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>• Postoperative Care</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>• Complications</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>• Surgical Outcomes</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>• Limitations of Techniques</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>Techniques in Eyelid Reconstruction</td>
<td>497-501</td>
</tr>
<tr>
<td>Samuel Baharestani, Jonathan Pargament, Jeffrey Nerad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Anterior Lamellar Defects</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>• Repair of Full-Thickness Eyelid Defects Up to 25%</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>• Repair of Full-Thickness Eyelid Defects of 25 to 50%</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>• Repair of Lid Defects of 50 to 75%</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>• Repair of Lower Lid Defects of 75% or Greater</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>Botulinum Toxins Injections—Functional and Aesthetic</td>
<td>503-513</td>
</tr>
<tr>
<td>Shubhra Goel, Cat Nguyen Burkat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Indications in Ophthalmology and Oculoplastic Surgery</td>
<td>503</td>
<td></td>
</tr>
<tr>
<td>• Contraindications</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>• Relative Contraindications</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>• Structure and Reconstitution</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>• Injection Technique</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>• Complications</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>• Post Procedure Care</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>Periocular Fillers</td>
<td>515-517</td>
</tr>
<tr>
<td>Andre S Litwin, Raman Malhotra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Temporary Fillers</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>• Permanent and Semipermanent Fillers</td>
<td>516</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>516</td>
<td></td>
</tr>
<tr>
<td>• Contraindications</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td>• Surgical Technique</td>
<td>517</td>
<td></td>
</tr>
</tbody>
</table>
• Temple Hollowing 518
• Brow Deflation 518
• Upper Eyelid 518
• Tear Trough and Eyelid-Cheek Junction 519
• Other Periorbital Uses of Injectable Soft-Tissue Fillers 520
• Postoperative Care 521
• Complications 521
• Place of the Technique in Surgical Armamentarium 522

60. Lasers in Oculoplastic and Aesthetic Surgery
 Cat Nguyen Burkat
 • Indications 525
 • Contraindications 525
 • Relevant Anatomy 526
 • Mechanism of Action 527
 • Technique 528
 • Post Laser Care 529
 • Specific Instrumentation 529
 • Complications 530
 • Place of the Technique in Aesthetic Oculoplastic Armamentarium 532

61. Ptosis Repair—Mullerectomy
 Shubhra Goel, Cat Nguyen Burkat
 • Prerequisites 537
 • Indications 537
 • Contraindications 537
 • Surgical Technique 537
 • Mechanism of Action 539
 • Considerations in Surgical Planning 540
 • Advantages and Disadvantages 540
 • Postoperative Care 540
 • Additional Procedures 541

62. Ptosis Repair—Fasanella Servat Procedure
 Vikas Menon, Santosh G Honavar
 • Indications 543
 • Contraindications 543
 • Surgical Technique 543
 • Postoperative Care 544
 • Complications 545

63. Ptosis Repair—Levator Surgery (External Approach)
 Vikas Menon
 • Indications 547
 • Contraindications 547
 • Surgical Technique 547
 • Postoperative Care 551

64. Ptosis Repair—Levator Surgery (Internal Approach)
 Andre S Litwin, Raman Malhotra
 • Anatomy 555
 • Indications 556
<table>
<thead>
<tr>
<th>Technique</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques in Frontalis Suspension</td>
<td>561</td>
</tr>
<tr>
<td>Blepharoplasty</td>
<td>569</td>
</tr>
<tr>
<td>Brow Repair</td>
<td>583</td>
</tr>
<tr>
<td>Eyelid and Eyebrow Surgery in East Asians</td>
<td>593</td>
</tr>
<tr>
<td>Correction of Eyelid Retraction</td>
<td>609</td>
</tr>
</tbody>
</table>

65. Techniques in Frontalis Suspension
Louis Savar, Stuart R Seiff
- Indications 561
- Contraindications 561
- Surgical Technique 561
- Mechanism of Action 565
- Postoperative Care 565
- Specific Instrumentation 565
- Complications 565
- Place of the Technique in Surgical Armamentarium 565

66. Blepharoplasty
Shubhra Goel, Cat Nguyen Burkat
- Indications 569
- Contraindications 569
- Surgical Technique 569
- Postoperative Care 581

67. Brow Repair
Shubhra Goel, Cat Nguyen Burkat
- Indications 583
- Evaluation 584
- Preoperative Preparation 586
- Surgical Technique 586
- Postoperative Care 591

68. Eyelid and Eyebrow Surgery in East Asians
Gangadhara Sundar
- Ethnic Considerations in Oculofacial Surgery—an Asian Perspective 593
- General Considerations 593
- East Asian Periorbital Anatomy 593
- General Facial Considerations 593
- Eyelid–Periorbital Considerations 594
- Asian Eyelid Surgery 597

69. Correction of Eyelid Retraction
Richard L Scawn, Jean-Paul Abboud, Don O Kikkawa, Bobby S Korn
- Indications 609
- Contraindications 609
- Surgical Techniques 609
- Postoperative Care 613
- Complications 614
- Surgical Outcomes: Scientific Evidence 614
70. Surgical Approaches and Techniques in Orbital Surgery 617
 Geoffrey E Rose, David H Verity
 • Key Approaches to the Orbit 617
 • Principles of Postoperative Management 622
 • Preoperative Care of the Orbital Patient 622

71. Decompression Surgery 625
 Robert A Goldberg, Daniel B Rootman
 • Brief Contextual History of Decompression 625
 • Anatomic Review 625
 • An Individualized Approach to Surgical Rehabilitation: The "Five Walls" of Decompression 628
 • Techniques: Minimally Invasive, Standard Deep Lateral Wall and Extended Medial/Posterior Floor Decompression 629

72. Endoscopic Orbital Surgery 635
 Kelvin KL Chong, Nicole C Tsim
 • Indications 635
 • Contraindications to Endoscopic Surgery 636
 • Surgical Technique 636
 • Mechanism of Action 642
 • Postoperative Care 642
 • Specific Instrumentation 643
 • Complications 644
 • Surgical Outcomes: Scientific Evidence/ Meta-Analysis 644
 • Place of the Technique in Surgical Armamentarium 644

73. Orbital Blowout Fractures 645
 Rakesh M Patel, Allen M Putterman
 • Evaluation 645
 • Pathophysiology 645
 • Indications 645
 • White-Eyed Blowout Fracture 650

74. Optic Nerve Sheath Fenestration 653
 Nathan Abraham, Christopher I Zoumalan
 • Indications 653
 • Preoperative Examination 653
 • Surgical Technique 654
 • Postoperative Care 655
 • Complications 655

75. Orbital Implants 657
 Sima Das, Santosh G Honavar
 • Nonintegrated Implants 657
 • Integrated Implants 658
 • Wrapping of Porous Implants 659
 • Pegging of Porous Implants 660
 • Implant Selection 661

76. Contracted Socket 663
 Fairooz P Manjanadavida, Santosh G Honavar
 • Acquired Contracted Socket 663
 • Indications and Goal of Surgery 663
 • Surgical Techniques 665
 • Congenital Contracted Socket 670
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.</td>
<td>Enucleation</td>
<td>Sima Das, Santosh G Honavar</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postoperative Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prosthesis Fitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td>Evisceration</td>
<td>Vikas Menon</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contraindications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Surgical Technique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>Orbital Exenteration</td>
<td>Sima Das, Santosh G Honavar</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Types of Orbital Exenteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Preoperative Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Surgical Technique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postoperative Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complications of Exenteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>Nasolacrimal Duct Probing and Irrigation</td>
<td>Ashley Lundin, Cat Nguyen Burkat, Shubhra Goel</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>• Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contraindications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Timing of Nasolacrimal Duct Probing and Irrigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postoperative Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>External Dacryocystorhinostomy</td>
<td>Sima Das</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>• Surgical Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Preoperative Preparations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anesthesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Surgical Procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postoperative Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indication of Intubation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indication of Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complications of DCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DCR In Special Situations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Results of External DCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>Dacryocystorhinostomy: Endonasal</td>
<td>Jane Olver</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>• Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contraindications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
83. Punctal and Canalicular Surgery
 David H Verity, Geoffrey E Rose
• Punctal Surgery 724
• Canalicular Surgery 725
• Surgical Technique 728

Section 7: Oncology Surgeries
 Bertil Damato

84. Introduction to Oncology Section
 Bertil Damato
• Surgical Excision 737
• Radiotherapy 737
• Phototherapy 738
• Cryosurgery 738
• Pharmacotherapy 738
• Psychological Aspects 739
• Consent 739
• Communicating with Patients 739
• Multidisciplinary Care 739
• Dealing with Uncertainty 739

85. Biopsy
 Bertil Damato, Sarah E Coupland, Heinrich Heimann, Carl Groenewald
• Indications 741
• Contraindications 741
• Preoperative Care 741
• Surgical Technique 741
• Laboratory Aspects 743
• Postoperative Care 744
• Specific Instrumentation 744
• Complications 744
• Surgical Outcome: Scientific Evidence/Metanalysis 744
• Place of the Technique in Surgical Armamentarium 745

86. Phototherapy
 Michael I Seider, Paul J Stewart, Bertil Damato
• Indications 747
• Contraindications 750
• Preoperative Care 750
• Technique 750
• Mechanism of Action 751
• Postoperative Care 751
• Specific Instrumentation 751
• Complications 752
• Surgical Outcome: Scientific Evidence/Meta-Analysis 752
• Place of the Technique in Surgical Armamentarium 752

87. Brachytherapy 755
 Sonia Callejo, Bertil Damato
 • Indications 755
 • Contraindications 755
 • Preoperative Care 755
 • Surgical Technique 756
 • Mechanism of Action 758
 • Postoperative Care 759
 • Specific Instrumentation 759
 • Complications 759
 • Surgical Outcomes: Scientific Evidence/Methanalysis 760
 • Place of the Technique in Surgical Armamentarium 762

88. Proton Beam Radiotherapy 765
 Andrea Russo, Bertil Damato
 • Indications 765
 • Contraindications 765
 • Preoperative Care 765
 • Technique 765
 • Mechanism of Action 766
 • Postoperative Care 766
 • Specific Instrumentation 767
 • Complications 768
 • Surgical Outcomes: Scientific Evidence/Methanalysis 769
 • Place of the Technique in Surgical Armamentarium 770

89. Stereotactic Photon Beam Radiation 771
 Bertil Damato, Martin Zehetmayer
 • Indications 771
 • Contraindications 771
 • Preoperative Care 771
 • Technique 771
 • Mechanism of Action 772
 • Postoperative Care 772
 • Specific Instrumentation 772
 • Complications 772
 • Surgical Outcomes: Scientific Evidence/Methanalysis 772
 • Place of the Technique in Surgical Armamentarium 773

90. Exoresection of Choroidal Melanoma 775
 Bertil Damato
 • Indications 775
 • Contraindications 775
 • Preoperative Care 775
 • Surgical Technique 775
 • Mechanism of Action 777
 • Specific Instrumentation 779
 • Complications 779
 • Surgical Outcomes: Scientific Evidence 780
 • Place of the Technique in Surgical Armamentarium 780
91. Iridocyclectomy

Iwona Rospond-Kubiak, Bertil Damato

- Indications 783
- Contraindications 783
- Preoperative Care 783
- Surgical Technique 783
- Mechanism of Action 785
- Postoperative Care 786
- Specific Instrumentation 786
- Complications 786
- Surgical Outcomes: Scientific Evidence/Metanalysis 787
- Place of the Technique in Surgical Armamentarium 787

92. Endoresection of Choroidal Melanoma

Carl Groenewald, Bertil Damato

- Indications 789
- Contraindications 789
- Preoperative Care 789
- Surgical Technique 790
- Mechanism of Action 790
- Postoperative Care 790
- Specific Instrumentation 790
- Complications 790
- Surgical Outcomes: Scientific Evidence/Metanalysis 791
- Place of the Technique in Surgical Armamentarium 792

93. Conjunctival Tumor Excision

Nihal Kenawy, Sarah E Coupland, Bertil Damato

- Indications 793
- Contraindications 793
- Preoperative Care 793
- Technique 793
- Mechanism of Action 795
- Postoperative Care 795
- Specific Instrumentation 795
- Complications 795
- Surgical Outcomes: Scientific Evidence/Metanalysis 796
- Place of the Technique in Surgical Armamentarium 797

94. Cryosurgery

Bertil Damato

- Indications 799
- Contraindications 800
- Preoperative Care 800
- Surgical Technique 800
- Mechanism of Action 800
- Postoperative Care 800
- Specific Instrumentation 800
- Complications 801
- Surgical Outcomes: Scientific Evidence/Metanalysis 801
- Place of the Technique in Surgical Armamentarium 801
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>95. Enucleation for Intraocular Tumors</td>
<td>803</td>
</tr>
<tr>
<td>Sachin Salvi, Naz Raoof, Bertil Damato</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>803</td>
</tr>
<tr>
<td>• Contraindications</td>
<td>803</td>
</tr>
<tr>
<td>• Preoperative Care</td>
<td>804</td>
</tr>
<tr>
<td>• Surgical Technique</td>
<td>804</td>
</tr>
<tr>
<td>• Mechanism of Action</td>
<td>809</td>
</tr>
<tr>
<td>• Postoperative Care</td>
<td>809</td>
</tr>
<tr>
<td>• Specific Instrumentation</td>
<td>809</td>
</tr>
<tr>
<td>• Complications</td>
<td>809</td>
</tr>
<tr>
<td>• Surgical Outcomes: Scientific Evidence/Metanalysis</td>
<td>809</td>
</tr>
<tr>
<td>• Place of the Technique in Surgical Armamentarium</td>
<td>809</td>
</tr>
<tr>
<td>96. Topical Therapy for Conjunctival Tumors</td>
<td>811</td>
</tr>
<tr>
<td>Nihal Kenawy, Bertil Damato</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>811</td>
</tr>
<tr>
<td>• Mechanism of Action</td>
<td>811</td>
</tr>
<tr>
<td>• Technique of Application</td>
<td>811</td>
</tr>
<tr>
<td>• Complications</td>
<td>812</td>
</tr>
<tr>
<td>• Surgical Outcomes: Scientific Evidence/Meta-Analysis</td>
<td>812</td>
</tr>
<tr>
<td>• Place of the Technique in Surgical Armamentarium</td>
<td>813</td>
</tr>
<tr>
<td>97. Systemic Therapy for Retinoblastoma</td>
<td>817</td>
</tr>
<tr>
<td>Laurence Desjardins, Christine Levy-Gabriel, Livia Lumbroso Le-Rouic, Nathalie Cassoux, Isabelle Aerts</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>817</td>
</tr>
<tr>
<td>• Contraindications</td>
<td>817</td>
</tr>
<tr>
<td>• Investigations</td>
<td>817</td>
</tr>
<tr>
<td>• Technique</td>
<td>817</td>
</tr>
<tr>
<td>• Patient Monitoring</td>
<td>818</td>
</tr>
<tr>
<td>• Complications</td>
<td>818</td>
</tr>
<tr>
<td>• Surgical Outcomes: Scientific Evidence/Meta-Analysis</td>
<td>820</td>
</tr>
<tr>
<td>98. Intra-arterial Chemotherapy for Retinoblastoma</td>
<td>823</td>
</tr>
<tr>
<td>Doris Hadjistilianou</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>823</td>
</tr>
<tr>
<td>• Contraindications</td>
<td>823</td>
</tr>
<tr>
<td>• Preoperative Care</td>
<td>823</td>
</tr>
<tr>
<td>• Surgical Technique</td>
<td>824</td>
</tr>
<tr>
<td>• Mechanism of Action</td>
<td>825</td>
</tr>
<tr>
<td>• Postoperative Care</td>
<td>825</td>
</tr>
<tr>
<td>• Specific Drugs and Instrumentation</td>
<td>825</td>
</tr>
<tr>
<td>• Complications</td>
<td>826</td>
</tr>
<tr>
<td>• Transient</td>
<td>826</td>
</tr>
<tr>
<td>• Surgical Outcomes: Scientific Evidence</td>
<td>828</td>
</tr>
<tr>
<td>• Place of the Technique in Surgical Armamentarium</td>
<td>828</td>
</tr>
<tr>
<td>99. Intravitreal Injections in Oncology</td>
<td>831</td>
</tr>
<tr>
<td>Lazaros Konstantinidis, Francis Munier, Bertil Damato</td>
<td></td>
</tr>
<tr>
<td>• Indications</td>
<td>831</td>
</tr>
<tr>
<td>• Contraindications</td>
<td>832</td>
</tr>
<tr>
<td>• Preoperative Care</td>
<td>832</td>
</tr>
<tr>
<td>• Surgical Technique</td>
<td>832</td>
</tr>
</tbody>
</table>
Section 8: Extraocular Muscle Surgery

Aparna Ramasubramanian, Deborah K Vanderveen

<table>
<thead>
<tr>
<th>100. Principles of Strabismus Surgery</th>
<th>841</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aparna Ramasubramanian, Deborah K Vanderveen</td>
<td></td>
</tr>
<tr>
<td>• Preoperative Evaluation 841</td>
<td></td>
</tr>
<tr>
<td>• Anesthesia for Strabismus Surgery 841</td>
<td></td>
</tr>
<tr>
<td>• Forced Duction Test 842</td>
<td></td>
</tr>
<tr>
<td>• Instruments for Strabismus Surgery 842</td>
<td></td>
</tr>
<tr>
<td>• Sutures and Needles for Strabismus Surgery 843</td>
<td></td>
</tr>
<tr>
<td>• Incision 844</td>
<td></td>
</tr>
<tr>
<td>• Securing Muscle 844</td>
<td></td>
</tr>
<tr>
<td>• Scleral Pass 844</td>
<td></td>
</tr>
<tr>
<td>• Mechanism of Action of Strabismus Surgery 845</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>101. Anatomical Considerations</th>
<th>847</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven J Ryder, Richard L Levy</td>
<td></td>
</tr>
<tr>
<td>• Surgical Anatomy 847</td>
<td></td>
</tr>
<tr>
<td>• Pulley System 852</td>
<td></td>
</tr>
<tr>
<td>• Extraocular Muscle Microanatomy 852</td>
<td></td>
</tr>
<tr>
<td>• Vascular Supply to the Extraocular Muscles 853</td>
<td></td>
</tr>
<tr>
<td>• Growth Considerations 853</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>102. Rectus Muscle Recession</th>
<th>855</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marielle P Young</td>
<td></td>
</tr>
<tr>
<td>• Incision 855</td>
<td></td>
</tr>
<tr>
<td>• Muscle Recession 856</td>
<td></td>
</tr>
<tr>
<td>• Myotomy 856</td>
<td></td>
</tr>
<tr>
<td>• Conjunctival Closure 857</td>
<td></td>
</tr>
<tr>
<td>• Special Considerations 858</td>
<td></td>
</tr>
<tr>
<td>• Kestenbaum-Anderson Procedure 859</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>103. Rectus Muscle Resection</th>
<th>861</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudha Nallasamy</td>
<td></td>
</tr>
<tr>
<td>• Horizontal Rectus Muscle Resection 861</td>
<td></td>
</tr>
<tr>
<td>• Vertical Rectus Muscle Resection 861</td>
<td></td>
</tr>
<tr>
<td>• Surgical Technique 862</td>
<td></td>
</tr>
<tr>
<td>• Alternative “Strengthening” Procedures 864</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>104. Faden Operation</th>
<th>867</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanie Kazlas</td>
<td></td>
</tr>
<tr>
<td>• Background 867</td>
<td></td>
</tr>
<tr>
<td>• Mechanism of Action 867</td>
<td></td>
</tr>
<tr>
<td>• Indications for Faden Operation 868</td>
<td></td>
</tr>
</tbody>
</table>
105. Inferior Oblique Muscle Surgery
Ankoor S Shah, Aristomenis Thanos
- Indications 875
- Contraindications 875
- Surgical Technique 875
- Mechanism of Action 879
- Complications 879
- Surgical Outcomes: Scientific Evidence 879
- Place of the Technique in Surgical Armamentarium 880

106. Superior Oblique Surgery
Chrisopher M Fecarotta, Jonathan H Salvin
- Indications 883
- Contraindications 883
- Surgical Technique for Weakening Procedures 883
- Surgical Technique for Strengthening Procedures 885
- Postoperative Care 886
- Complications 887
- Place in Surgical Armamentarium 887

107. Adjustable Sutures
Bharti Nihalani-Gangwani
- Indications 889
- Anesthesia and Analgesia 889
- Surgical Techniques 890
- Do Adjustable Sutures Increase the Success Rates? 891
- Optional and Delayed Suture Adjustment 891
- My Preferred Surgical Technique 891
- Adjustment 892
- Special Circumstances 894
- Advantages and Disadvantages 895
- Postoperative Drift 895
- Complications 895

108. Transposition Surgery
Manoj V Parulekar
- Anatomical Considerations and Principle Behind Transpositions 899
- History 899
- Indications 900
- Assessment of Suitability of Transposition Procedures 901
- Surgical Technique 901
- Complications and their Management 902

109. Complications of Strabismus Surgery
Aparna Ramasubramanian, Ashwin Mallipatna
- Nonocular Complications 905
- Intraoperative Ocular Complications 906
- Intraoperative Muscle Complications 906
10. Chemodenervation for Strabismus
Mohammad Ali A Sadiq

Botulinum Toxin
- Ocular Indications 913
- Contraindications 913
- Surgical Technique 914
- Mechanism of Action 915
- Effect on Alignment 915
- Complications 916
- Outcomes after Botulinum Injection 916

Bupivacaine
- Strabismic Indications 917
- Contraindications 917
- Surgical Technique 917
- Effect on Alignment 917
- Complications 917

Section 9: Open Globe Injuries
Rupesh Agrawal

Rupesh Agrawal, Sumita Phatak
- Evaluation of a Patient with Open Globe Injury 923
- Initial Management of Open Globe Injury 929
- Surgical Repair 930

Section 10: The Practice of Ophthalmic Surgery
George L Spaeth

12. Informed Choice Versus Informed Consent
George L Spaeth
- Consent Versus Choice 939
- Toward a Paradigm of Informed Choice 940
- Revisiting the Case Scenarios 940
- Health-Care Professional’s Perspective 941
113. Medicolegal Issues
 George L Spaeth
 • Preventing an Action from Being Brought 943
 • Avoiding Being Held Negligent if Named in an Action 944
 • Steps that Help Protect a Physician from being Held Negligent if a Suit is Brought against Him or Her 945

114. Ethics of Surgery
 George L Spaeth, Parul Ichhpujani
 • How to Determine What Is “Ethical”? 947
 • Is there a Solution to Address the Ethical Dilemmas? 948
 • Principles of Medical Ethics 948
 • Determination of Necessity of a Procedure 948

Index 951
INTRODUCTION

Cataract is the leading cause of blindness [as defined by the World Health Organization, best corrected visual acuity (BCVA) in the better eye of < 20/400] throughout the world and is responsible for approximately 50% of blindness in the developing world, affecting nearly 20 million people. As this number continues to grow, the need for a high-quality, cost-effective cataract surgical technique becomes more obvious.

It is well established that the combination of continuous curvilinear capsulorhexis (CCC), phacoemulsification, and in-the-bag placement of an intraocular lens (IOL) is the standard of care in developed nations for the treatment of most visually disabling cataracts. Phacoemulsification allows the removal of cataracts through small (< 3.0 mm) self-sealing incisions, resulting in minimal surgically induced astigmatism and rapid visual rehabilitation. However, the high cost of purchasing and maintaining a phacoemulsification machine, the dependence on unreliable amenities, such as electricity, and the limited availability of appropriate training for technicians and surgeons are significant obstacles currently limiting the widespread use of this technique in the developing world, where 90% of cataract blindness exists.

Manual small incision cataract surgery (MSICS)—a remarkable technique first described by Blumenthal in 1994—has received significant international attention as a low-cost, low-technology, high-quality alternative to phacoemulsification. MSICS is similar to extracapsular cataract extraction (ECCE) in that it involves removal of an intact crystalline lens from the eye while maintaining the integrity of the posterior capsule. However, in contrast to traditional ECCE, in MSICS the lens is explanted through a 6.0- to 7.0-mm wedge-shaped, multiplanar, self-sealing sclerocorneal tunnel that is large enough to allow removal of the nucleus and insertion of a rigid posterior chamber IOL. A major advantage of this innovative technique is the self-sealing nature of the incision, effectively eliminating the need for suturing of the wound. This allows for less surgically induced astigmatism, more rapid visual rehabilitation, and improved long-term wound stability. In addition, surgeons properly trained in MSICS can routinely perform surgeries in < 5 minutes, with outcomes comparable with phacoemulsification in the setting of advanced cataracts. In this chapter, we describe the different MSICS techniques and their employment throughout the world (Table 10-1).

<table>
<thead>
<tr>
<th>TABLE 10-1</th>
<th>List of instruments necessary for the manual small incision cataract surgery procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dish for gauze pads</td>
<td>Toothed forceps (0.12 or 0.3)</td>
</tr>
<tr>
<td>Gauze pads</td>
<td>Bevel-up crescent blade</td>
</tr>
<tr>
<td>5% betadine</td>
<td>Microkeratome blade</td>
</tr>
<tr>
<td>Eyelid speculum</td>
<td>Viscoelastic</td>
</tr>
<tr>
<td>4–0 silk</td>
<td>27-gauge cannula</td>
</tr>
<tr>
<td>Needle driver</td>
<td>Simcoe I/A cannula</td>
</tr>
<tr>
<td>Superior rectus forceps</td>
<td>Tying forceps</td>
</tr>
<tr>
<td>Wescott scissors</td>
<td>Vannas scissors</td>
</tr>
</tbody>
</table>
Section 2: Cataract Surgery

GENERAL SURGICAL
TECHNIQUE OF MSICS

Placing a Bridle Suture

Manual small incision cataract surgery can be performed through either a superior or a temporal scleral tunnel. When using a superior tunnel, a bridle suture may be placed beneath the tendon of the superior rectus muscle to facilitate surgical exposure. In cases with a temporal approach, the lateral rectus muscle can be used. The bridle suture is useful in the following ways:

- To maneuver and fixate the globe during certain steps of surgery, such as tunneling
- To provide counter-tractional force during procedures such as nucleus removal and epinucleus delivery, thereby making these procedures easier and less traumatic.

Creating a Scleral Tunnel

Site

The size of the external incision is approximately 6–7 mm and, hence, substantially larger than that required for instrumental phacoemulsification. A temporal tunnel is preferred over a superior tunnel for the following reasons:

- It tends to counteract the pre-existing against-the-rule astigmatism, which is predominantly present in the elderly
- It minimizes the crowding effect of the brow, especially in deep sockets, and facilitates intraoperative exposure
- It permits the globe to remain parallel to the axis of the microscope, allowing the red reflex to be better appreciated, providing better visibility.

Initial Incision

A fornix-based conjunctival flap of around 7 mm is made. After Tenon’s capsule is dissected off, light cautery is applied. A 30–50% thickness external scleral groove of around 6–7 mm in width is made approximately 2 mm posterior to the surgical limbus. The incision should be tangential to the limbus (or frown-shaped) to limit postoperative astigmatism and improve wound stability. The size of the wound is determined by the size of the nucleus, and accurate estimation of nuclear size will improve with experience. However, as a rule, beginning surgeons should begin with a 7-mm external incision (Fig. 10-1).

Sclerocorneal Tunneling

A sclerocorneal tunnel is created using an angled, bevel-up crescent blade. The blade is gently advanced parallel to the ocular surface to create a single plane tunnel of uniform thickness approximately 1.5 mm into the clear cornea (Figs. 10-2 and 10-3). The wound should be trapezoidal in appearance, with the internal portion of the tunnel extending limbus to limbus. The anterior chamber should not be entered at this point.

The depth of the incision is the single most important aspect of the tunnel. A tunnel that is too shallow will result in buttonholes and an unstable wound. A tunnel that is too deep can result in early entry into the anterior chamber, difficulty in anterior chamber stability, iris prolapse, and an unstable wound.

Creating a Side Port Entry

One side port entry can be made using a #15 super blade at the 10 o’clock position or perpendicular to the tunnel in the clear cornea. It is useful (but not required) for:

- Injection of viscoelastic
- Subincisional cortical aspiration and
- Injection of balanced saline solution (BSS) into anterior chamber at the end of the procedure to adjust the intraocular pressure to a physiologic level.

Making the Internal Corneal Incision

A sharp 3.2-mm-angled keratome is used to enter the anterior chamber after viscoelastic has been injected. The heel of the keratome is raised until the blade becomes parallel to the iris plane, resulting in a dimple on the corneal surface. The keratome is then advanced anteriorly in the iris plane until the anterior chamber is entered and the internal wound is visualized as a straight line (Fig. 10-4). The initial incision is then extended from side to side for the full extent of the tunnel. During extension of the incision, care should be taken to keep the internal incision in the same plane.
Performing the Capsulotomy

Several different capsulotomy techniques are possible with MSICS surgery. CCC may provide optimal IOL positioning but can be difficult in the setting of large mature, hypermature, or morgagnian cataracts, and in the setting of poor surgical visibility due to corneal scars, pterygium, and suboptimal operating microscopes, all of which are common circumstances in the developing world. The triangular capsulotomy and can-opener capsulotomy can be particularly useful in these suboptimal surgical settings, especially when capsular staining techniques are not available (see Fig. 10-3).

If performing a CCC, the size of the capsulorhexis should be based upon the size and density of the cataract. It should have a minimum diameter of 5–6 mm and may need to be as large as 7–8 mm in diameter for more mature cataracts. If the CCC is too small for prolapse of the lens into the anterior chamber, the surgeon can make eight or more radial relaxing incisions or convert to “canopener” capsulotomy. Capsular staining is helpful in cases with white or dense brown cataracts. However, if performing a CCC is not feasible, MSICS can also be safely performed using a “can opener” or triangular (V-shaped) capsulotomy. In cases of mature and hypermature cataracts, a “can opener” or triangular capsulotomy is actually preferred, because it facilitates prolapse of the nucleus into the anterior chamber.

If the surgeon uses a triangular capsulotomy, this step can be performed prior to creation of the internal corneal incision and entry into the anterior chamber. A straight 25- to 27-gauge needle attached to a 1-mL syringe filled with BSS is advanced into the sclerocorneal tunnel just posterior to the limbus, angled parallel to the iris plane, and then advanced into the anterior chamber. Using the bevel tip of the needle, a linear cut is made from 4 o’clock to 12 o’clock and then from 8 o’clock to 12 o’clock so the two incisions meet at 12 o’clock (assuming a superiorly placed sclerocorneal tunnel, see Figure 10-3). Thus, a triangular, or V-shaped, flap of anterior lens capsule is created with its base still attached. The apex of the ‘V’ should be oriented toward the surgeon, and the base of the capsulotomy away from the surgeon. Each point of the triangle should be approximately 3 mm from the center of the pupil. Next, the apex is lifted with the tip of the needle and peeled away from the surgeon. This confirms the capsulotomy incisions are connected at the apex.
Performing Hydrodissection

Hydrodissection is performed using a 27-gauge bent-tip cannula attached to a syringe filled with BSS. In the presence of a CCC, this procedure is completed in one smooth step by injecting the fluid beneath the anterior capsular rim (Fig. 10-5). However, in the presence of a “can opener” or triangular capsulotomy, small amounts of fluid can be injected in multiple areas so as to “unshackle” the nucleus from the confines of the cortical but one must be careful not to cause an extension which could lead to posterior nuclear loss. At the end of a successful hydrodissection, the nucleus should be freely mobile within the capsular bag. Alternatively, hydrodissection can be performed with an irrigating Simcoe cannula. This low-pressure system is ideal in the setting of a triangular capsulotomy.

Prolapsing the Nucleus into the Anterior Chamber

Oftentimes when hydrodissection is performed, one pole of the nucleus will prolapse into the anterior chamber along with the fluid wave. At the sight of this prolapse, further hydrodissection can be stopped and under the cover of an adequate amount of viscoelastics, the remainder of the nucleus can be delivered by rotating the prolapsed pole with a Sinskey hook. If the nucleus does not prolapse with hydrodissection alone, then a combination of careful fluid infusion and lens rotation using a Simcoe cannula or a viscoelastic cannula can be employed.

Prolapsing the Nucleus: Particular Techniques for Specific Types of Cataract

Mature cortical cataracts: White cataracts can be managed by doing a capsulorhexis after staining the capsule with 0.1 mL of 0.06% trypan blue dye. The nucleus can be levered out of the bag using a Sinskey hook, often without hydroprocedures, if the cortical attachments to the nucleus are loose. It is also worthwhile to debulk the cortical matter using a Simcoe cannula prior to prolapsing the nucleus. The capsular staining helps in performing the difficult step of nucleus prolapse through an intact capsulorhexis, as the dye-stained capsular rim is distinctly visible throughout the surgery. A Sinskey hook is first used to retract the stained capsulorhexis, then to engage the equator of the nucleus, and to lever one pole outside the capsular bag, after which the rest of the nucleus is rotated into the anterior chamber. During this maneuver, any compromise to the capsular bag can be detected easily and relaxing incisions can be made at any point of the process.

Hypermature Cataracts and Phacolytic Glaucoma

With this technique, after staining the capsule with trypan blue, a small nick is made in the anterior capsule using a bent 26-G needle mounted on a syringe, and the liquid cortex is aspirated. The capsular bag is inflated with viscoelastic and the capsulorhexis is completed using Utrata Capsulorhexis Forceps or equivalent. A Sinskey hook is then used to lever one pole of the nucleus outside the capsular bag, and the rest of the nucleus is then rotated out into the anterior chamber.

Hard brown/black cataracts: In these cases, the safest technique will be to perform a “can opener” or triangular capsulotomy and prolapse the nucleus, as described earlier. If the surgeon is keen to perform a capsulorhexis, it is safer to stain the capsule and perform a larger capsulorhexis (6.0–7.5 mm) followed by a less forceful hydrodissection. As the capsule is stained, it will be easy to retract the capsule and lever out a part of the nucleus with a Sinskey hook (as described above). The nucleus is then gently rotated out, watching the movement of the capsular bag throughout the procedure. If the capsular bag seems to be compromised, a few relaxing incisions in the capsule can avoid intracapsular extraction of the nucleus. Alternatively, a bimanual technique can be tried, which is described later.

Small pupils: In patients with small pupils, one can resort to procedures such as stretch pupilloplasty using Kuglen hooks or make sphincterotomies. This allows greater visualization for performing capsulotomy and hydrodissection and makes easing the nucleus into the anterior chamber a much safer maneuver. In certain high-risk cases, such as pseudoexfoliation with a small rigid pupil and an associated hard nucleus, it would be prudent to go in for a small sector iridectomy.
or a “keyhole” iridectomy. If the small pupil is pliable, an alternative—and more aesthetically pleasing, bimanual technique is possible. This technique is useful if one has failed to prolapse the nucleus by the mechanical method, or in cases of small pupils with hard cataract.

Bimanual technique: In cases with zonular compromise, a bimanual prolapse technique is employed: in this technique, a cyclodialysis spatula and a Sinskey hook are used for the prolapse. The nucleus is retracted to one side (temporal in right eye or nasal in left eye, assuming a superior position) with a Sinskey hook through the sclerocorneal tunnel (Fig. 10-6). Following this, the spatula is introduced through the side port incision and placed under the nucleus. Using the spatula as a fulcrum, the nucleus is rotated with the Sinskey hook out of the capsular bag. With proper use of this technique, the cyclodialysis spatula absorbs the rotational forces, minimizing stress on the zonules.4

Subluxated cataracts: The MSICS can be done in selected cases of subluxated cataracts wherein the pupil is well dilated, and the nucleus is not very dense. Here also, staining of the capsule with trypan blue facilitates the capsulorhexis, helps with implanting a capsular tension ring (CTR), and aids safe prolapsing of the nucleus. After assessing the extent of subluxation and the density of nucleus, the capsule is stained and the capsulorhexis is performed. This is followed by cortical-cleaving hydrodissection and manual insertion of the CTR through the paracentesis. The nucleus is then hydrodelineated, and irrigation is continued until one pole of the nucleus prolapses out of the capsular bag. The rest of the nucleus is wheeled into the anterior chamber using a Sinskey hook.5

Extracting the Nucleus

Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel by one of the following techniques:

- **Irrigating vectis technique**
- **Phacosandwich technique**
- **Phacoemulsification technique**
- **Modified Blumenthal technique**
- **Fish hook technique, or**
- **Simcoe technique.**

Each will be discussed here in turn.

Irrigating Vectis Technique

This technique makes use of a combination of mechanical and hydrostatic forces to extract the nucleus. An irrigating vectis is, of course, necessary for this procedure (Figs. 10-7A and B). This vectis is 8-mm long, 4-mm wide, and has an anterior and posterior surface. The anterior surface has a slight concavity and has two ends, with the anterior end bearing three small irrigating ports, each 0.3 mm in size. The posterior end is continuous with the main body of the vectis and is attached to a syringe containing lactated Ringer’s solution or BSS.

After the nucleus is prolapsed into the anterior chamber, viscoelastics are liberally injected, first above and then below the nucleus. The upper layer shields the endothelium, whereas the lower layer pushes the posterior capsule and iris diaphragm posteriorly. This maneuver creates adequate space in the anterior chamber for atraumatic nuclear delivery.

A good superior rectus bridle suture is necessary for the success of the next step. To perform, the bridle suture is first held loosely in the left hand. After checking the patency of the ports, the vectis is then inserted under the nucleus with the anterior surface facing up. If it is an immature cataract, one will be able to see the margins of the vectis under the nucleus in place. It is extremely important to visualize the tip of the vectis lying anterior to the iris, for if iris tissue is pinched between the lens nucleus and the vectis; a large (or complete) iridodialysis may result upon attempted removal of the nucleus.

As the superior rectus bridle suture is pulled tight, the irrigating vectis is slowly withdrawn without irrigating, until the superior pole of the nucleus is engaged in the tunnel. Gentle irrigation is then started and the vectis is slowly withdrawn while pressing down gently on the posterior lip of the sclerocorneal tunnel. The force of irrigation must be reduced when the maximum diameter of the nucleus just crosses the inner lip of the tunnel. This decreases the likelihood of
forcefully expelling the nucleus from the anterior chamber. A high-pressure evacuation of the lens from the anterior chamber can result in sudden anterior chamber decompression, shallowing of anterior chamber, and extrusion of ocular contents, including lens capsule and vitreous.

Of note, if the wound is placed temporally, a pull on the nasal conjunctiva by the surgical assistant can aid in nucleus extraction, as the bridle effect of the lateral rectus is usually not sufficient.

Potential complications of nucleus extraction with an irrigating vectis and their causes are listed in Table 10-2.

Phacosandwich Technique

In this technique, a Sinskey hook is used in addition to the vectis. The key requirement is that the anterior chamber is adequately filled with viscoelastics. Once the vectis is placed beneath the nucleus, the Sinskey hook is carefully introduced and placed on top of the nucleus, effectively “sandwiching” it between the vectis and the Sinskey hook. The tip of the Sinskey hook is placed beyond the central portion of the lens, enabling a more secure grip on the nucleus with this two-handed technique. With the Sinskey hook in the dominant hand and the vectis in the other, the nucleus is “sandwiched” and extracted. While extracting the nucleus, the assistant should pull the superior rectus suture and simultaneously pull the globe inferiorly by grasping the conjunctiva at the 6 o’clock position near the limbus with toothed forceps. The outer portion of the nucleus, the epinucleus, and a portion of the cortex will be sheared off in this technique and can be removed with the irrigating vectis immediately after nucleus delivery (Figs. 10-8A and B).

Phacoemulsification Technique

This is the technique of manual nuclear fragmentation for removing a large nucleus through a small incision. A bisector or trisector can be used instead of a Sinskey hook, which is used to cleave its way through the nuclear substance. Steady, constant pressure on the bisector or the trisector, combined with the posterior pressure of gently lifting with the vectis, will split the nucleus. The split nuclear fragments can then be removed one at a time using the irrigating vectis.

Modified Blumenthal Technique

This technique uses an “anterior chamber maintainer” (ACM) throughout the procedure. An ACM is a hollow tube with a 0.9-mm outer diameter and 0.65-mm inner diameter. The tube of the ACM is attached to a bottle of BSS, suspended 50–60 cm above the patient’s eye.

Two small beveled entries are made in the cornea; the first is 1.5-mm long, placed between the 5 and 7 o’clock position (assuming a superior wound position), for inserting the ACM. The second port is 1-mm wide, placed at the 11 o’clock position, for the entry of various instruments. The fluid flow from the ACM is stopped only during the capsulotomy. After
TABLE 10-2 Potential complications of nucleus extraction with an irrigating vectis and their causes

<table>
<thead>
<tr>
<th>Potential complications</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal endothelial damage</td>
<td>• Misjudged nuclear size leading to disproportion between nucleus and wound size</td>
</tr>
<tr>
<td></td>
<td>• Inadequate use of viscoelastics</td>
</tr>
<tr>
<td></td>
<td>• Improper technique in handling the vectis</td>
</tr>
<tr>
<td></td>
<td>• Iatrogenic: Surgeon’s ego leading to repeated attempts at forceful extraction</td>
</tr>
<tr>
<td>Trapped nucleus</td>
<td>• Improper bridle suture</td>
</tr>
<tr>
<td></td>
<td>• Misjudged nuclear size</td>
</tr>
<tr>
<td></td>
<td>• Improperly designed vectis, i.e. not having sufficient concavity</td>
</tr>
<tr>
<td></td>
<td>• Poor technique</td>
</tr>
<tr>
<td>Iris trauma/iris stretching/iridodialysis</td>
<td>• Premature entry causing iris to be washed out through the weak site</td>
</tr>
<tr>
<td></td>
<td>• Premature injection of fluid</td>
</tr>
<tr>
<td></td>
<td>• Vectis incarceration of the iris opposite the sclerocorneal tunnel</td>
</tr>
<tr>
<td></td>
<td>• Vectis not pressed down sufficiently on the posterior scleral lip</td>
</tr>
<tr>
<td>Posterior capsular rent with vitreous loss</td>
<td>• Sharp edges of the vectis</td>
</tr>
<tr>
<td></td>
<td>• Forceful extrusion of the nucleus</td>
</tr>
<tr>
<td></td>
<td>• Enlargement of a pre-existing zonular dialysis caused while prolapsing the nucleus</td>
</tr>
</tbody>
</table>

Figures 10-8A and B Nucleus extraction using the phacosandwich technique.

A good hydrodissection, the nucleus is prolapsed into anterior chamber. The freed nucleus, extremely mobile in a deep anterior chamber, is ready for being propelled out by the hydropressure generated by an ACM system.

A plastic glide 3–4-mm wide, 0.3-mm thick, and 3-cm long is subsequently inserted under the nucleus, one-third to one-half width nucleus distance. The bottle height is then raised to 60–70 cm above the patient’s head, and slight pressure is applied over the lens glide on the scleral side. Intermittent pressure then propels the nucleus out of the sclerocorneal tunnel. Finally, a few more taps should enable the epinucleus and cortex to easily flow out of the anterior chamber.
If the nucleus is not engaging the inner lip of the tunnel despite the full volume of ACM flow, the reasons may be:
- A tunnel that is small, irregular, or incomplete
- Improperly fashioned or leaky side ports
- Premature entry of the tunnel, or
- Vitreous in the anterior chamber.

Fish hook Technique

In this technique, a 30-gauge disposable needle is bent in the form of a fishhook and used in the nucleus extraction. After thorough hydrodissection or hydrodelineation, the anterior chamber is filled with viscoelastic and only the superior pole of the nucleus is brought into the anterior chamber. Viscoelastic is injected in front of and behind the nucleus again to protect the surrounding structures.

The 30-gauge “fish hook” needle is then advanced into the anterior chamber with a sideways tilt to prevent endothelial injury. It is then maneuvered behind the nucleus to hook the undersurface of the lens. At this point, viscoelastic can be reinjected if there is any difficulty in traversing the fishhook. Once the nucleus is hooked, it is delivered out of the eye by applying slight downward pressure on the posterior lip of the tunnel. The nucleus is thus delivered without performing extensive maneuvers in the anterior chamber.

Simcoe Technique

The Simcoe technique uses the same principles as the Blumenthal technique, combining mechanical and hydrostatic forces to allow extraction of the nucleus. After delivery of the lens into the anterior chamber and injection of viscoelastic anterior and posterior to the lens, the sclera or Tenon’s capsule is grasped with 0.12 toothed forceps, and the globe is rotated away from the surgeon. The Simcoe is introduced into the anterior chamber through the sclerocorneal tunnel and is centered posterior to the lens and anterior to the iris. The irrigation is then turned on. The tip of the cannula should be visualized distal to the nucleus. The hydrostatic forces will bring the nucleus to the internal incision. Once the nucleus engages in the tunnel, slight downward pressure is applied to the external lip of the wound using the cannula while slowly withdrawing the cannula at the same time. Upon nuclear delivery, the Simcoe can be used immediately for cortical cleanup.

Performing the Epinucleus Removal, Cortex Aspiration, and IOL Implantation

After the extraction of the endonucleus from the anterior chamber, a mixture of epinucleus and viscoelastic materials remains in the anterior chamber. It is easier to remove this mixture with the help of an irrigating vectis, although either of the following two methods can be employed:
- The epinucleus can be flipped out of the bag by introducing the Simcoe cannula under the anterior capsular rim and lifting out the epinucleus into the anterior chamber. The prolapsed epinucleus can then be extracted by depressing the inferior scleral lip with the Simcoe cannula and pulling the superior rectus bridle suture at the same time
- The epinucleus can also be manipulated by doing visco-dissection. Viscoelastic is injected under the capsular rim, between the capsule and cortex, to lift this material out of the bag and into the anterior chamber, where it can be extracted through the sclerocorneal tunnel. The remainder of the cortical matter can then be aspirated using a Simcoe cannula.

The IOL is then placed through the tunnel into the intact capsular bag. As the size of the wound is above 6 mm, it is preferable to place a rigid Poly(methyl methacrylate) (PMMA) IOL with a 6 mm optic, especially in the setting of a “can opener” capsulotomy. In case where a capsulorhexis has been performed, then the option of implanting a foldable lens into the bag is available.

Smooth placement of the IOL is imperative to prevent anterior chamber collapse, iris trauma, and zonular dehiscence. If there is vitreous loss or prior zonular dehiscence, this is even more critical. Viscoelastic should be used to inflate the capsular bag, and a small amount should be injected over the subincisional irs, effectively creating a “viscoelastic ramp” for passage of the IOL and preventing inadvertent iris trauma or prolapse. (In straightforward cases, some experienced surgeons use air instead of viscoelastic to maintain the anterior chamber). The IOL is then inserted through the sclerocorneal tunnel in a two-step maneuver: using the nontoothed forceps, the leading haptic and optic are inserted, assuring that the leading haptic begins to enter the capsular bag. At this point, the surgeon’s other hand can use forceps to stabilize the wound and prevent retraction of the IOL from out of the anterior chamber. Then, the trailing haptic is grasped by the nontoothed forceps and pushed toward the left aspect of the anterior chamber, rotating the leading haptic and optic fully into the capsular bag and allowing placement of the trailing haptic safely after. Any remaining viscoelastic can then be removed with the Simcoe cannula, and the wound can be tested for stability.

In select cases, the IOL may be strategically placed earlier in the procedure. For example, for cases of hypermature or morgagnian cataracts in which the capsular bag is extremely weak and collapsible, the IOL can be inserted pre-emptively between the nucleus and the posterior capsule, where it...
serves as a makeshift CTR. This allows for safe removal of the hypermature nucleus from a stabilized capsular bag, without subsequent tearing of the zonules or vitreous loss.

Assuring Wound Closure

The anterior chamber is reformed by injecting BSS through the side port incision, or through the tunnel if no side port has been created. If the wound is constructed properly, a watertight closure is observed, and no sutures are necessary. One should be able to press down moderately on the central cornea without noting wound distortion or collapse of the anterior chamber.

After watertight closure is ensured, the conjunctiva should be placed to cover the external scleral incision. This can be performed on both superior and temporal incisions using cautery. Alternatively, the conjunctiva can be closed using a single interrupted suture.

OUTCOMES: PHACOEMULSIFICATION VERSUS MSICS

As discussed above, phacoemulsification is considered the gold standard for cataract extraction in developed nations. But, undoubtedly, phacoemulsification is disadvantaged (particularly in the developing world setting) by being significantly more expensive than intracapsular cataract extraction, ECCE, or MSICS. Still, cost aside, how do outcomes with phacoemulsification compare with MSICS?

Three randomized controlled studies have measured and compared patient outcomes in phacoemulsification and MSICS in the developing world. All these studies have reported similar uncorrected visual acuity (UCVA) and BCVA ≥ 20/60 at 6 weeks (2 studies) and 6 months (1 study) postoperatively. A recent randomized prospective study from Nepal evaluated 6-month outcomes of 108 patients randomized to phacoemulsification or MSICS for the treatment of advanced cataracts (average VA ≤ 20/300). The two techniques demonstrated equal rates of UCVA ≥ 20/60 and BCVA ≥ 20/60 at 6 months (Figs. 10-9 and 10-10). In the Nepal study setting, phacoemulsification was less efficient, requiring 15.5 minutes on average for completion compared with 9 minutes for MSICS. In addition, complication rates, including endophthalmitis rates, were shown to be similar between the two procedures.

Thus, in summary, the BCVA and UCVA ≥ 20/60 at 6 months after surgery was similar between the phacoemulsification and MSICS groups. However, MSICS was more efficient, more economical, and resulted in faster visual rehabilitation compared with phacoemulsification in treating advanced cataracts in the developing world.
CONCLUSION
The MSICS technique provides a low cost, highly efficient surgical option for the developing world, with outcomes comparable with the most advanced surgical techniques used throughout the developed world. The high speed and low cost with which the surgery can be performed, even in the setting of very mature cataracts, make this technique ideal for decreasing the burden of cataract blindness in the developing world.

REFERENCES