CLINICAL CASES IN GLAUCOMA
An Evidence-based Approach

Editors

Shibal Bhartiya MS
Senior Consultant
Department of Ophthalmology
Fortis Memorial Research Institute
Gurgaon, Haryana, India

Parul Ichhpujani MS
Associate Professor
Glaucoma Services
Department of Ophthalmology
Government Medical College and Hospital
Chandigarh, India

The Health Sciences Publisher
New Delhi | London | Panama
Dedicated
To those, who will read this book
And to Aradhya, who will only ever read the dedication.
Contributors

Youssef Abdelmassih MD
Beirut Eye and ENT Specialist Hospital
Al-Mathaf Square
Beirut, Lebanon

Oscar Albis-Donado MD
OMESVI Diagnostic Group
Mexico City, Mexico
Instituto Mexicano de Oftalmología
Querétaro, México

Jorge Vila Arteaga MD FEBO
Glaucoma Consultant
Innova Ocular, Clínica Vila
Valencia, Spain

Shibal Bhartiya MS
Senior Consultant
Department of Ophthalmology
Fortis Memorial Research Institute
Gurgaon, Haryana, India

Madhu Bhoot DNB
Consultant
Glaucoma and Anterior Segment
Dr Shroff Charity Eye Hospital
New Delhi, India

Giovanna Casale-Vargas MD
Cornea, OMESVI, Mexico
Glaucoma, Glaukos
Zacatecas, Mexico

M Chockalingam D.O. DNB FRCS (Glasgow)
P.G. D.H.M.
Consultant
Apollo Hospital, Chennai
Senior Consultant
Apollo Specialty Hospital
Vanagaram, Chennai
Visiting Faculty
Apollo Institute of Hospital Management and Allied Sciences, Chennai and
KMCIT Institute of Hospital Administration, Coimbatore
Chief Consultant
Vignesh Meenu Eye Clinic
Chennai, Tamil Nadu, India

Nikhil S Choudhary MS
Consultant
Seetha Lakshmi Glaucoma Center
Anand Eye Institute
Hyderabad, Telangana, India

Vaaraj Dave MS
Consultant
Dr TV Patel Eye Institute and
Sheth ML Vadiwala Eye Hospital
Vadodara, Gujarat, India

Jasleen Dhillon MS
Consultant
Glaucoma and Cataract Services
Centre for Sight
New Delhi, India

Syril Dorairaj MD
Associate Professor
Department of Ophthalmology
Mayo Clinic
Jacksonville, Florida, USA

Suneeta Dubey MS
Consultant
Glaucoma Services
Dr Shroff Charity Eye Hospital
New Delhi, India

Sylvain el-Khoury MD
Consultant
Beirut Eye and ENT Specialist Hospital
Al-Mathaf Square
Beirut, Lebanon

Monica Gandhi MS
Consultant
Glaucoma Services
Dr Shroff Charity Eye Hospital
New Delhi, India

Ivan Goldberg MD FRANZCO
Clinical Associate Professor
Ophthalmologist and
Head of Glaucoma Unit
Sydney Eye Hospital
Sydney, Australia

Alejandra Hernandez-Oteyza MD
OMESVI Diagnostic Group
Mexico City, Mexico
Instituto Mexicano de Oftalmología
Querétaro, México

Gábor Holló MD PhD DSc
Director
Glaucoma Services and Perimetry Unit
Department of Ophthalmology
Semmelweis University
Budapest, Hungary

Parul Ichhapuiani MS
Associate Professor
Glaucoma Services
Department of Ophthalmology
Government Medical College and Hospital
Chandigarh, India

Fabio Kanadani PhD
Head of the IOCM’s
Ophthalmology Department
Full Professor of the Medical Science
College of Minas Gerais
Minas Gerais, Brazil

Pankaj Kataria MS
Senior Resident
Glaucoma Services
Advanced Eye Centre
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Sushmita Kaushik MS
Additional Professor
Glaucoma Services
Advanced Eye Centre
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Ziad Khoueir MD MSEd (Ophthalmology)
Diseases and Surgery of the Eye
Beirut Eye and ENT Specialist Hospital
Al-Mathaf Square
Beirut, Lebanon
Preface

There is some stuff that we love to read, and then there is some stuff that we have to read: to remain relevant in our clinical practice, to be responsible citizens, to be who we want to be. The *Journal of Current Glaucoma Practice, Journal of Glaucoma, Survey of Ophthalmology, American Journal of Ophthalmology, British Journal of Ophthalmology, Annals of Ophthalmology, National Geographic, New York Times, Guardian, Times of India, Leo Tolstoy, Harry Potter, Orson Scott Card, Calvin and Hobbes, Vogue*...The list is not half complete, we have not mentioned even one of the zillion prescribed textbooks, and we already have three hundred hours of reading, to be crammed into a twenty-four hour day, if we read every day. A twenty-four hour day that also needs us to work, sleep, and go about the general business of living.

So what we have done, in this beautiful little book, is to condense all of the current published glaucoma evidence into tiny bite-sized pieces, relevant to your everyday glaucoma practice. Some of the best minds in glaucoma who have been reading and writing glaucoma for very many years, have got together and picked up representative cases from their own clinics, and delineated the preferred practice pattern in the light of the available evidence-base. We have sifted the information on glaucoma that is currently available, chosen the one which actually stands up to scrutiny, removed the statistical jargon and concentrated on the lowest common denominator: evidence-based clinical practice of glaucoma.

Clinical Cases in Glaucoma: An Evidence-based Approach is therefore an easy read, and gives you a real world feel of how the early manifest glaucoma trial (EMGT) or the tube versus trabeculectomy (TVT) or the ocular hypertension treatment study (OHTS) actually translate into the last patient you saw on Thursday. Reading the book will help you make better clinical judgments, if you are a veteran clinician-surgeon. It will help you understand the science of glaucoma better, if you are a researcher, and it will help you take care of your patients better, if you are just stepping into clinical practice.

All of us who have worked on this book together have at various points in our career missed having a book such as this in the front pockets of our lab coats. We are, therefore, delighted to have actually put it together for you, and for ourselves, when the fingerprints of the newly available minimally invasive glaucoma surgery (MIGS) escape us, as we scratch our heads over a 52-year-old patient who keeps forgetting to use his glaucoma medication.

Happy reading, and our best wishes for taking care of your glaucoma patients better. Each day.

Shibal Bhartiya MS
Parul Ichhpujani MS
We would like to acknowledge the efforts of all our authors and contributors. Without their continued support and dedication, this book would not have been possible.

We would also like to thank our publishers, Jaypee Brothers Medical Publishers (P) Ltd for their valued support and faith in us. A special word of gratitude for Ms Chetna Malhotra Vohra (Associate Director—Content Strategy) and our extremely competent and capable Development Editor, Ms Nedup Denka Bhutia.

It would have impossible to take on this project without the continued and unwavering support of our family, friends and colleagues. A very special thanks to them too.
1. **Ocular Hypertension**

 Shibal Bhartiya, Parul Ichhpujani

 - **Case 1:** No treatment required for ocular hypertension 1
 - **Case 2:** Treatment for ocular hypertension required depending on age 1
 - **Case 3:** Treatment for ocular hypertension required depending on central corneal thickness 1
 - How to manage this patient if his central corneal thickness measured 480 microns? or 610 microns? 2
 - **Case 4:** Treatment for ocular hypertension required depending on dv and high peak pressures 2

 - Investigations 3
 - Follow-up Protocol 3
 - Commentary 3

2. **Glaucoma Suspect**

 Augusto Vieira, Tiago Prata, Fabio Kanadani, Syril Dorairaj

 Who is a Glaucoma Suspect? 6

 - **Case 1:** Strong risk factors 6
 - **Case 2:** Disc hemorrhage 6
 - **Case 3:** Low central corneal thickness 7
 - **Case 4:** Disc asymmetry 7
 - **Case 5:** Diurnal variation of intraocular pressure 8
 - **Case 6:** Glaucoma suspect at a young age 9

 Literature review 10
 - Intraocular Pressure 10
 - Optic Nerve Head 10
 - Central Corneal Thickness 10
 - Risk Factors for Glaucoma 11

3. **Primary Open-Angle Glaucoma**

 Shibal Bhartiya, Parul Ichhpujani

 - **Case 1:** No treatment required for early primary open-angle glaucoma 13
 - **Case 2:** Treatment for early primary open-angle glaucoma required depending on age 14
 - **Case 3:** Treatment for early primary open-angle glaucoma required depending on central corneal thickness 16
 - **Case 4:** Treatment for moderate primary open-angle glaucoma requiring more than one antiglaucoma medication 19
 - **Case 5:** Treatment of severe primary open-angle glaucoma requiring surgery since not controlled on maximal tolerable medical therapy 19
 - **Case 6:** Treatment of severe primary open-angle glaucoma requiring surgery at first diagnosis due to severe visual field loss 20
Investigations 20
Follow-up Protocol 21
What is the Natural Course of the Disease? 21
Broad Guidelines for Management 22

4. **Medical Therapy: Monotherapy, Fixed Combinations, Side Effects and Quality of Life Implications**

 Simon Skalicky, Ivan Goldberg

 - Case 1: Monotherapy 25
 - Case 2: Fixed drug combinations 25
 - Case 3: Side effects and quality of life 28
 - Investigations 29
 - Follow-up Protocol 29
 Brief Review of Literature 29
 Summary 30
 - Pharmacological Classes 30
 - Fixed Combination Medications 30
 - Preserved versus Preservative Free Preparations 30
 - Drop Instillation Technique (Instructions for New Patients) 31
 - Commentary 31

5. **Laser Trabeculoplasty**

 Shibal Bhartiya, Parul Ichhpunjani

 Indications 33
 Contraindications 34
 - Case 1: SLT for drug induced ocular surface disease 34
 - Case 2: SLT for patient unable to instill drugs 34
 - Case 3: SLT for angle closure 34
 - Case 4: Repeat SLT 35
 - Repeatability of Selective Laser Trabeculoplasty 35
 - Selective Laser Trabeculoplasty versus Argon Laser Trabeculoplasty 35

6. **Angle-Closure Glaucoma**

 Sushmita Kaushik, Pankaj Kataria

 Stages of Angle-Closure Disease 36
 - Primary Angle-Closure Suspect 36
 - Primary Angle Closure 36
 - Primary Angle-Closure Glaucoma 36
 - Acute Angle Closure 36
 Epidemiology 37
 Risk Factors 37
 - Demographic Factors 37
 - Anatomic Factors 37
 - Precipitating Factors 38
7A. **Trabeculectomy versus Tube** 41

Giovanna Casale-Vargas, Oscar Albis-Donado, Gabriel Lazcano-Gómez

- **Case 1:** Trabeculectomy with mitomycin C 41
- **Case 2:** Trabeculectomy with biodegradable collagen matrix implant, ologen 41
- **Case 3:** EX-PRESS mini glaucoma shunt 41
- **Case 4:** Primary Ahmed valve implant 44
- **Case 5:** Ahmed valve implant and neovascular glaucoma 44

Investigations 44
- Follow-up Protocol 44

Brief Review of Literature 45
Summary 46

7B. **Choice of Surgery: Nonpenetrating Deep Sclerectomy** 48

Sylvain Roy, André Mermoud

- **Case 1:** Primary open-angle glaucoma 48
- **Case 2:** Pseudoexfoliative glaucoma 49
- **Case 3:** Normal tension glaucoma 49
- **Case 4:** Angle-closure glaucoma and neovascular glaucoma 50
- **Case 5:** Traumatic glaucoma 50
- **Case 6:** Uveitic glaucoma 51
- **Case 7:** Pigmentary glaucoma 52

Investigations 52
Follow-up Protocol 53
Brief Review of Literature 53
Summary 53

7C. **Transscleral Cyclophotocoagulation** 55

Monica Gandhi, Suneeta Dubey, Julie Pegu, Nishtha Singh

Mechanism of Action 55
Indications 55
Case 1: TSCPC for NVG 56
Case 2: TSCPC for postkeratoplasty glaucoma 57
Case 3: TSCPC for failed glaucoma surgery 57

How to Use a G-Probe? 58
How many Quadrants to Treat? 58
Complications 58

7D. Endocyclophotocoagulation 59
Parul Ichhpujani, Shibal Bhartiya
Indications 59
Contraindications 60
Technique 60
• Equipment 60

Case 1: Endocyclophotocoagulation with phacoemulsification 60
Case 2: Endocyclophotocoagulation in angle closure 61
Case 3: Endocyclophotocoagulation-plus 61

8. Complications after Trabeculectomy 62
Oana Stirbu, Jorge Vila Arteaga

Case 1: Overfiltering bleb 62
Case 2: Corneal dellen 62
Case 3: Wound leak 63
Case 4: Fistula obstruction 64
Case 5: Postoperative hyphema 64
Case 6: Malignant glaucoma 65
Case 7: Blebitis and bleb-related endophthalmitis 65
Case 8: Ischemic bleb 66
Case 9: Tenon cyst 66
Case 10: Dysesthetic bleb 67

9. Tube Complications 68
Nadia Ríos-Acosta, Oscar Albis-Donado

Case 1: Hypotony resolved without treatment 68
Case 2: Hypotony that requires treatment 68
Case 3: Tube exposure 68
Case 4: Aqueous misdirection 69
Case 5: Corneal decompensation 69
Case 6: Tube blockage 70
Follow-up Protocol 70
Brief Review of Literature 70
Shallow or Flat Anterior Chamber 71
Hypertensive Phase 72
Corneal Decompensation 73
Motility Disorders 73
Tube Exposure 73
Endophthalmitis 73
Complications of Ahmed Valve Implant on Children 73

10. Complications of Nonpenetrating Deep Sclerectomy 75

Sylvain Roy, André Mermoud

Case 1: Rupture of the thin trabeculo-Descemet’s membrane 75
Case 2: Leak of the filtering bleb (Seidel’s sign) 76
Case 3: Hypotony 77
Case 4: Bleb fibrosis and encystment of the bleb 77
Case 5: Secondary rise in the intraocular pressure 78

Investigations 78
Follow-up Procedure 79
Brief Review of Literature 79
Summary 79

11. Complications of Newer Surgeries 80

Youssef Abdelmassih, Sylvain el-Khoury, Ziad Khoueir, Tarek Shaarawy

Classification 80
Complications 80
Case 1: Medical management of shallow anterior chamber after EX-PRESS glaucoma filtration device 81
Case 2: XEN Gel-stent implant combined with cataract surgery 81
Case 3: CyPass Micro-stent implantation with postoperative hyphema 81
Case 4: Hypertony following iStent implantation 83

Management of Complications 84
• Intraocular Pressure Increase 84
• Hyphema 84
• Hypotony/Shallow Anterior Chamber 84
• Stent Occlusion 84
• Bleb Leak 85

12A. Glaucoma in Children 86

Alejandra Hernandez-Oteyza, Oscar Albis-Donado

Case 1: Primary congenital glaucoma 86
Case 2: Juvenile open-angle glaucoma 86
Case 3: Glaucoma associated with nonacquired ocular anomalies 87
Case 4: Glaucoma associated with nonacquired systemic disease or syndrome 87
12B. Postrefractive Surgery Glaucoma

Mona Khurana, Aditya Neog

Investigations 96
- Prerrefractive Surgery Screening 96
- Postrefractive Surgery 96

Case 1: Steroid-induced glaucoma post refractive surgery 97
Case 2: Primary open-angle glaucoma in the postrefractive surgery period 97
Case 3: Late detection of secondary glaucoma following laser-assisted in-situ keratomileusis 97
Case 4: Bilateral acute angle-closure glaucoma following hyperopic laser-assisted in-situ keratomileusis 98
Case 5: Unilateral acute angle-closure glaucoma following phakic intraocular lens implantation 98

Management of Glaucoma 98
- Medical Management 98
- Laser 98
- Surgery 98
- Follow-up 99

Review of Literature 99
- Intraocular Pressure Measurement 99
- Steroid Response 99
- Acute Optic Neuropathy Post laser-assisted in-situ Keratomileusis 99
- Acute Angle-Closure Glaucoma 100

12C. Glaucoma after Vitreoretinal Surgery

Gowri J Murthy, Praveen R Murthy

Classification 102
Risk Factors for Postvitreoretinal Surgery Glaucoma 102

Case 1: Postsilicone oil-removal glaucoma 102
Case 2: Postoperative steroid-induced glaucoma-managed medically 104
Case 3: Multiple mechanisms for raised intraocular pressure requiring surgical management 105
Case 4: Iris bombe causing secondary angle closure and silicone oil overfill 107
Case 5: Silicone oil-induced glaucoma in a high myope managed with silicone oil removal with endoscopic cyclophotocoagulation 108
Investigations 110
Management 112
• Medical Management 112
• Laser Iridotomy 113
• Surgical Management 113
Follow-up Protocol 114
Brief Review of Literature 114
Summary 114

12D. Neovascular Glaucoma
Jasleen Dhillon
Etiopathogenesis 117
• Diabetes 117
• Ischemic Central Retinal Vein Occlusion 117
• Carotid Artery Obstructive Disease 117
Clinical Features 117
Management 118
• Grades of Neovascular Glaucoma 118
• Panretinal Photocoagulation 118
• Antivascular Endothelial Growth Factor 118
• Medical Management of Neovascular Glaucoma 119
• Surgical Management of Glaucoma 119

Case 1: NVG in a diabetic with PDR 119
Case 2: NVG in vascular occlusion 119
Case 3: Anti VEGF for NVG 120
Case 4: PRP for NVG 120
Case 5: PPV with GDD for NVG 121
Case 6: TSCPC for NVG 121

12E. Cataract and Glaucoma
M Chockalingam
Case 1: Cataract surgery alone in an eye with no prior glaucoma filtration surgery 123
Case 2: Cataract and glaucoma surgery 123
Case 3: Sequential glaucoma and cataract (cataract surgery post-trabeculectomy) 125

Workup of a Patient before Decision Making and Surgery 126
Follow-up Protocol 126
Key Points to be Considered in Decision-making 127
• Cataract Surgery Alone with No Previous Glaucoma Filtration Surgery 128
• Combined Cataract and Glaucoma Surgery 129
• Two-staged Cataract and Glaucoma Surgery 130

12F. Compliance
Shibal Bhartiya, Parul Ichhpujani, Suresh Kumar
Case 1: White coat adherence 131
Case 2: Drug induced nocturnal hypotension 133
Case 3: Drug induced ocular surface disease 134
13. Informed Consents

Shibal Bhartiya, Parul Ichhpujani, Suresh Kumar

Who can Give Consent? 137
Ethics of Consent 138
• Exemptions to Disclosure 138
Special Consents 138
• Informed Consent for Trabeculectomy 138
• Informed Consent for Glaucoma Drainage Implant Surgery 139
• Informed Consent for Cataract Surgery 140
• Informed Consent Form for Neodymium-doped: Yttrium Aluminum Garnet Laser Capsulotomy 141
• Neodymium-doped: Yttrium Aluminum Garnet Laser Iridotomy 142
• Informed Consent for Selective Laser Trabeculoplasty 142
• Informed Consent for Diode Laser Cyclophotocoagulation 143

14A. How to Overcome Imaging Artifacts and Prevent Misinterpretation of Imaging Results

Gábor Holló

Background 145
Technical Evidences 145
Interpretation Evidences 146
• Parameter Types and their Practical Clinical Value 147
Case 1: Red disease due to healthy macrodiscs 148
Case 2: Green disease due to macula edema 148
Case 3: Blink artifact 149
Case 4: Segmentation error due to a vitreoretinal surface abnormality 150
Case 5: Segmentation error caused by a vitreous floater 150
How to Avoid Misinterpretation of RNFLT and Inner Macular Retina Thickness Changes during Long-term Follow-up? 151
Summary 152

14B. Sources of Errors While Interpreting Perimetry

Parul Ichhpujani, Sahil Thakur, Suresh Kumar

Case 1: Error due to pupil size 153
Case 2: Error due to drooping lid 154
Case 3: Error due to incorrect ocular aid 154
Case 4: Error due to fatigue 155

14C. Sources of Errors While Performing and Interpreting Tonometry

Nikhil S Choudhary, Paaraj Dave, Parul Ichhpujani

Goldmann Applanation Tonometer 159
• How to Perform Applanation Tonometry using Goldmann Applanation Tonometer? 159
• Procedure and Instrumentation 159
• Common Sources of Error and Ways to Avoid Them 160
15A. Clinical Trials in Glaucoma

Suneeta Dubey, Madhu Bhoot, Nishtha Singh, Dushyant Sharma, Monica Gandhi

Ocular Hypertension Treatment Study 165
Early Manifest Glaucoma Trial 166
Collaborative Initial Glaucoma Treatment Study 167
Collaborative Normal-tension Glaucoma Study 168
Advanced Glaucoma Intervention Study 169
Glaucoma Laser Trial 170
Trabeculectomy versus Tube Study 170
Ahmed-Baerveldt Comparison Study 172
Ahmed versus Baerveldt Study 173

15B. Basics of a Trial Design for Glaucoma

Shibal Bhartiya, Parul Ichhpujani

Levels of Evidence for Clinical Application (Choosing the Study Design) 175
Definition of Disease (Type and Severity) 175
Definition of Cohort Demographics 177
Definition of Data Points Evaluated and End Point 177
Baseline Intraocular Pressure Measurement 177
Visual Acuity 177
Visual Field 177
Ocular Hypotensive Medication 178
Follow-up and Reporting Time Windows 178
Evaluation (Criteria for Success and Failure) 178
For Diagnostic Modalities 178
For Therapeutic Modalities (Surgical and Medical) 178
Ethical Considerations 179
Randomization to Nontreatment Arm 179
Clear Definition of Acceptable Outcomes 179
Informed Consent 179
Approval from Institutional Review Board or Ethics Committee 179
Adherence to Tenets of Declaration of Helsinki 179
Declaration of Sources of Funding (Financial and Nonfinancial Support and Conflicts of Interest) 179
Statistical Considerations 179
Calculation of Sample Size 179
Statistical Significance 179
Software for Data Analysis 179
Randomization 179
Data Analysis 179
Eyes versus Patients 179
Clinical Cases in Glaucoma: An Evidence-based Approach

- Interim Analysis and Stopping Rules 180
- Data Representation 180
- Special Considerations 180
- Methods of Economic Evaluation of Glaucoma 180
- Methods of Quality of Life Assessments 180

Index
Primary Open-Angle Glaucoma

Shibal Bhartiya, Parul Ichhpujani

INTRODUCTION

Primary open-angle glaucoma (POAG) is a chronic progressive optic neuropathy defined by an open, normal appearing anterior chamber angle and raised intraocular pressure (IOP), with no other underlying disease, in the presence of the characteristic cupping of the optic disc with corresponding visual field defects, due to retinal ganglion cell loss. If there is an identifiable underlying cause for raised IOP, this is termed secondary glaucoma. If the IOP is within normal limits, this is termed normal-tension glaucoma (NTG) or low-tension glaucoma (LTG).

Case 1: No treatment required for early primary open-angle glaucoma

Mr X, a 72-year-old gentleman, was found to have persistently elevated IOPs on three visits [oculus uterque (OU) 23, 24, 24 mm Hg]. The cup-to-disc (C:D) ratio was 0.5:1 and 0.45:1 with slightly eccentric cup with inferior > superior > nasal > temporal (ISNT) maintained (Fig. 3.1). The visual field [humphrey visual field (HVF) 30-2, Swedish Interactive Threshold Algorithms standard] showed early changes suggestive of glaucomatous damage (Fig. 3.2). The central corneal thickness (CCT) was 531 microns and

Fig. 3.1: Vertical cup-to-disc ratio of 0.5:1 and 0.45:1, with slightly eccentric cup with ISNT rule maintained.
522 microns for the right and left eyes, respectively. The retinal nerve fiber layer (RNFL) optical coherence tomography (OCT) (CIRRUS) did show early RNFL thinning (Fig. 3.3), and gonioscopy showed wide open angles with no pigmentation. He had a coronary artery bypass surgery 6 years ago and was a hypertensive on medication. There was no family history of glaucoma or blindness.

Risks and benefits of initiating glaucoma therapy were discussed with Mr X, keeping in mind the following:
- Life expectancy
- Early field defects
- Slightly elevated eye pressures
- Pre-existing dry eye due to old age which would probably get exacerbated with antiglaucoma medication.

He agreed that deferring treatment was better than initiating treatment immediately on diagnosis. He was asked to follow-up every 4–6 months for 2 years. His visual fields did not show any significant change on serial monitoring. The visual field evaluation was thereafter scheduled for once a year.

Case 2: Treatment for early primary open-angle glaucoma required depending on age

Ms A, a 53-year-old lady, was found to have persistently elevated IOPs on three visits (OU 28, 24, 25 mm Hg) with a diurnal fluctuation of 8 mm Hg in both the eyes. The cup: disc ratio was 0.6:1 and 0.55:1 with a focal neuroretinal rim thinning. The visual field showed early changes suggestive of glaucomatous damage (Fig. 3.4). The CCT was 532 and 526 for the right and left eyes, respectively. The RNFL OCT (Cirrus) showed RNFL thinning (Fig. 3.5), and gonioscopy showed wide open angles. She had no comorbidities. There was no family history of glaucoma or blindness.

Risks and benefits of initiating glaucoma therapy were discussed with Ms A, keeping in mind the following:
- Long-life expectancy
- Early field defects
- Slightly elevated eye pressures.
Fig. 3.3: Early RNFL thinning in the left eye on SDOCT.

(ONH: Optic nerve head; RNFL: Retinal nerve fiber layer; SDOCT: Spectral domain optical coherence tomography).
She agreed that it was better to initiate treatment immediately on diagnosis. She was prescribed travoprost eye drops, one drop each eye, once at bedtime in both eyes and asked to follow-up after 6 weeks. The IOP was found to be 18 mm Hg OU with a diurnal fluctuation of 4 mm Hg and 5 mm Hg, respectively. She was advised to repeat fields after 6 months, and no significant change on serial monitoring was noted for over 2 years. She was advised to continue drops as prescribed.

Case 3: Treatment for early primary open-angle glaucoma required depending on central corneal thickness

Mrs X, a 68-year-old lady was found to have persistently elevated IOPs on three visits (OU 24, 25, 25 mm Hg), with a diurnal fluctuation of 9 mm Hg and 8 mm Hg, respectively. The cup: disc ratio was 0.7 and 0.65 with corresponding early changes on visual fields suggestive of glaucomatous damage. The CCT was 472 μ and 482 μ for the right and left eyes, respectively. The RNFL OCT (CIRRUS) showed early RNFL thinning (Fig. 3.6), and gonioscopy showed wide open angles. She had no comorbidities. There was no family history of glaucoma or blindness.

Risks and benefits of initiating glaucoma therapy were discussed with Ms X, keeping in mind the following:
- Life expectancy
- Early field defects
- Elevated eye pressures
- Increased chances of progression in CCT less than 520 microns.

She agreed that it was better to initiate treatment immediately on diagnosis. She was prescribed bimatoprost eye drops, one drop each eye, once at bedtime in both eyes and asked to follow-up after 6 weeks. The IOP was found to be 16 OU with a diurnal fluctuation of 4 mm Hg and 3 mm Hg, respectively. She was advised to repeat fields after 6 months and no significant change on serial monitoring for over 2 years. She complained of dryness in both eyes and was prescribed carboxymethylcellulose eye drops, thrice a day, which obviated her symptoms. She was advised to continue drops as prescribed, and the visual field evaluation was thereafter scheduled for once a year.
Fig. 3.5: Flattening of retinal nerve fiber layer humps on SDOCT. (ONH: Optic nerve head; RNFL: Retinal nerve fiber layer; SDOCT: Spectral domain optical coherence tomography).
Fig. 3.6: SDOCT showing thinning of retinal nerve fibre layer in right eye.
(ONH: Optic nerve head; RNFL: Retinal nerve fiber layer; SD OCT: Spectral domain optical coherence tomography).
Case 4: Treatment for moderate primary open-angle glaucoma requiring more than one antiglaucoma medication

Mr X, a 67-year-old gentleman, was diagnosed with moderate POAG with persistently elevated IOPs on two visits (OD and OS: 34, 35 mm Hg) with a diurnal fluctuation of 8 mm Hg OU. The C:D ratio was 0.85 and 0.7 with broken ISNT rule and corresponding moderate glaucomatous damage on visual fields (Fig. 3.7). The CCT was 522 and 512 for the right and left eyes, respectively. The RNFL OCT also showed flattening of RNFL humps and gonioscopy showed wide open angles.

Risks and benefits of initiating glaucoma therapy were discussed with him, keeping in mind the following:
- Life expectancy
- Field defects
- Elevated eye pressures
- Increased chances of progression in CCT less than 520 microns.

He agreed that it was better to initiate treatment immediately on diagnosis and to try a single medication for efficacy and safety rather than combination therapy. He was prescribed bimatoprost eye drops, one drop each eye, once at bedtime in both eyes, and asked to follow-up after 2 days. The IOP was found to be 24 mm Hg OU, and he was thereafter asked to report for a water drinking test (WDT) after 4 weeks. The IOP was found to be 22 mm Hg OU with a diurnal fluctuation of 4 mm Hg and 6 mm Hg, respectively.

Since the target IOP was not reached with one drug, a fixed dose combination of bimatoprost and timolol was advised, once at bedtime. The fact that the efficacy of timolol is less at night was weighed against the chances of reduced compliance with addition of a second bottle. This was discussed with the patient and he preferred to use a fixed-dose combination (FDC) in view of convenience of use. At 4 weeks follow-up, the IOP was found to be 16 mm Hg OU with a diurnal fluctuation of 3 mm Hg and 5 mm Hg, respectively.

He was advised to repeat fields after 4 months and no significant change was observed on serial monitoring for over 2 years. He was advised to continue drops as prescribed and the visual field evaluation was thereafter rescheduled for once every 6 months, with a RNFL OCT performed annually.

Case 5: Treatment of severe primary open-angle glaucoma requiring surgery since not controlled on maximal tolerable medical therapy

Mr X, a 69-year-old pseudophakic gentleman, was on treatment for advanced POAG over the last 6 years with persistently elevated IOPs on two visits (OD and OS: 26, 25)
with a diurnal fluctuation of 8 mm Hg OU on treatment [bimatoprost harmonized system (HS), brimonidine + timolol FDC BD, brinzolamide BD]. The C:D ratio was 0.9 OU with a marked concentric neuroretinal rim (NRR) loss (Fig. 3.8). The visual field could not be performed to poor visual acuity. The CCT was 532 and 541 for the right and left eyes, respectively. Risks and benefits of glaucoma surgery were discussed with him and he agreed that it was better to go ahead with surgery since even maximal topical therapy was insufficient to control his IOP.

He was advised trabeculectomy augmented with mitomycin C, for the right eye first, followed by the left eye. After surgery his IOP was 16 and 18, respectively, without any medication, despite release of the releasable sutures in the early postoperative period. He required the addition of a prostaglandin analog (bimatoprost HS, OU) to achieve target pressure of 11 mm Hg and 12 mm Hg, respectively. He attained the target IOP and then he was advised to continue drops as prescribed.

Case 6: Treatment of severe primary open-angle glaucoma requiring surgery at first diagnosis due to severe visual field loss

Mrs X, a 65-year-old pseudophakic lady with diabetes, presented to the outpatients clinic with IOP of 32 both eyes, and a near total optic atrophy in the right eye, and a C:D ratio of 0.85 OD and 0.9:1 OS. Her best-corrected visual acuity in right eye was 6/60 and 3/60 in the left eye. A 24-2 HVF OD was predictably showing a severe visual field loss encroaching fixation and a 10-2 test was there after advised, which showed split fixation. Visual field in left eye could not be performed due to poor vision.

The possibility of imminent visual loss was discussed with her and the risks and benefits of primary surgery were also discussed with the patient and her family. Given the advanced stage of glaucomatous damage, high IOP, it was decided to perform a primary trabeculectomy on both eyes at an interval of 4 weeks. In the interim, she was referred to an internist for euglycemic control and prescribed bimatoprost HS, brimonidine + timolol FDC BD and brinzolamide BD eye drops for both eyes. After surgery, her IOP was 12 and 11, respectively, without any medication following release of the releasable sutures in the early postoperative period for the left eye only. A repeat field was ordered after 4 months for the right eye and no significant change was observed on serial monitoring for over a year.

INVESTIGATIONS

Every patient of glaucoma requires a careful and comprehensive eye examination. Mandatory tests include:

- **Visual Acuity and Refraction**
- **Tonometry (Applanation)**

On at least two different occasions, at different times of the day, with IOP more than 21 mm Hg is mandatory for diagnosing POAG. IOP less than 21 mm Hg does not rule out glaucoma.
Chapter 3: Primary Open-Angle Glaucoma

- **Slit Lamp Examination**
 A through slit lamp evaluation is mandatory to rule out any secondary reasons for elevated IOP.

- **Gonioscopy**
 Anatomically normal and open angles are mandatory for diagnosing POAG.

- **Optic Nerve Assessment**
 A dilated assessment of the optic nerve head (ONH) is essential together with a red-free evaluation of the peripapillary RNFL. The ONH can be documented using a hand-drawn, labeled diagram (special emphasis on cup/disc ratio, notching, RNFL defects and/or hemorrhage) and/or a clinical picture. A color photo and a red-free photo of the ONH are essential for serial follow-up.

- **Visual Field Testing**
 Reliable visual fields provide a baseline for future follow-up. The first visual fields are usually discarded as unreliable or having a learning curve.

- **Central Corneal Thickness (Pachymetry)**
 It is an adjunct that helps to make therapeutic decisions.

- **Imaging of the Optic Nerve with Retinal Nerve Fiber Layer Analysis**
 Imaging of the optic nerve with RNFL analysis (ocular coherence tomography, Heidelberg retinal tomography or scanning laser polarimetry) provides a statistical comparison with the normative database, thereby providing additional objective information for subsequent management.

 In addition, the following tests, if performed, help in managing the condition better in case the facilities exist and are affordable to the patient.

- **Diurnal Variation of Intraocular Pressure**
 A 24-hour diurnal variation of IOP includes IOP recording every 2 hours, preferably using the same Goldmann applanation tonometry, by the same observer, whenever possible. A diurnal variation of more than 8 mm over 24 hours is considered indicative of glaucoma. Diurnal variation of IOP curve may provide additional information and influence treatment protocol.

- **Water Drinking Test**
 A WDT with 10 mL/kg body weight of water over 5 minutes may be performed as a surrogate for diurnal variation of IOP to provide a rough idea of IOP peaks and fluctuation.

- **Stereo-optic disc photographs to confirm normal optic nerve parameters and document baseline.**

<table>
<thead>
<tr>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>GON + normal visual field on SAP</td>
</tr>
<tr>
<td>Moderate</td>
<td>GON + VFD in one hemifield, but not within 5° of fixation on SAP</td>
</tr>
<tr>
<td>Severe</td>
<td>GON + VFD in both hemifields ± loss within 5° of fixation in at least one hemifield on SAP</td>
</tr>
</tbody>
</table>

(GON: Glaucomatous optic neuropathy; VFD: Visual field defect; SAP: Standard automated perimetry).

Table 3.1: Severity of primary open-angle glaucoma.

FOLLOW-UP PROTOCOL

Follow-up protocol is to be customized to the individual patient depending on the risk of developing glaucoma, risk factors present and whether treatment has been initiated or not. Initially, a follow-up may be scheduled after 4–6 weeks for safety and efficacy checks after initiating topical anti-glaucoma therapy. Six fields, done over 2 years, are required for establishing the rate of progression.

Repeat visual field and optic nerve testing may be performed annually or sooner if changes are suspected.

WHAT IS THE NATURAL COURSE OF THE DISEASE?

- Of approximately 1.2 million RGC at birth, about 25% are naturally lost over 75 years.

- With POAG retinal ganglion cell loss is accelerated with a generally slow, but variable rate of loss.

- Up to 40% of optic nerve fibers need to be lost before a visual field defect appears on automated perimetry usually progressing from paracentral or mid-peripheral defect in the earlier stages to temporal visual field loss and loss of central fixation points in advanced disease.

- On comparing the mean age at presentation of patients with early relative visual field loss to those with absolute field loss within 5° of fixation, the estimated average time for untreated early disease to progress to end-stage blindness substratified by IOP levels 21–25 mm Hg, 25–30 mm Hg, and more than 30 mm Hg was 14.4 years, 6.5 years and 2.9 years, respectively.
Clinical Cases in Glaucoma: An Evidence-based Approach

Table 3.2: Randomized clinical trials in primary open angle glaucoma establishing the role of intraocular pressure lowering in reducing development and progression of disease.

<table>
<thead>
<tr>
<th>Trial</th>
<th>No. of patients</th>
<th>Follow-up years</th>
<th>Study</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHTS</td>
<td>1,636</td>
<td>10</td>
<td>Eyes without POAG and IOP 24–32 mm Hg 20% IOPR</td>
<td>Medications</td>
<td>POAG risk: 4.4% treated vs. 9% untreated 10% increased risk for every mm Hg increase</td>
</tr>
<tr>
<td>CNTGS</td>
<td>230</td>
<td>7</td>
<td>POAG in eyes with IOP< 24 mm Hg 30% IOPR</td>
<td>Medications and surgery</td>
<td>POAG progression: 12% treated vs. 35% untreated</td>
</tr>
<tr>
<td>EMGT</td>
<td>255</td>
<td>7–11</td>
<td>Newly diagnosed early stage POAG. IOPR protocol driven</td>
<td>Betaxolol and laser trabeculectomy or no treatment</td>
<td>POAG progression: 45% treated vs. 62% untreated</td>
</tr>
<tr>
<td>CIGTS</td>
<td>607</td>
<td>5+</td>
<td>Newly diagnosed POAG. IOPR protocol driven</td>
<td>Medications and surgery</td>
<td>No significant difference in visual field loss with initial trabeculectomy (~46%) vs. medical therapy (~36%)</td>
</tr>
<tr>
<td>AGIS</td>
<td>591</td>
<td>10–13</td>
<td>Advanced POAG. IOPR protocol driven</td>
<td>Argon laser trabeculectoplasty (A) and trabeculectomy (T): ATT and TAT sequences</td>
<td>Visual function outcomes better with ATT in blacks and TAT in whites. Mean visual field loss 3 times greater when IOP 14.0–17.5 mm Hg vs.< 14.0 mm Hg.</td>
</tr>
</tbody>
</table>

(POAG: Primary open-angle glaucoma; OHTS: Ocular hypertension treatment study; IOPR: Intraocular pressure reduction; CNTGS: Collaborative normal-tension glaucoma study; EMGT: Early manifest glaucoma trial; CIGTS: Collaborative initial glaucoma treatment study; AGIS: Advanced glaucoma intervention study; ATT: Argon trabeculectomy followed by trabeculectomy followed by trabeculectomy; TAT: Trabeculectomy followed by argon trabeculectomy followed by trabeculectomy.)

- Early manifest glaucoma trial (EMGT) has shown that progression was faster in older than in younger patients (p = 0.002), and those with newly diagnosed untreated pseudoexfoliative glaucoma (PXFG) (93%) compared with high-tension glaucoma (HTG) (74%) or NTG (56%) (p = 0.012) over 5 years. Median time to progression also differed considerably among groups; 19.5 months in pseudoexfoliation glaucoma, 44.8 months in HTG and 61.1 months in NTG (p less than 0.0001).
- Table 3.2 enlists the trials, which show the beneficial effect of IOP lowering in reducing the disease progression.

BROAD GUIDELINES FOR MANAGEMENT

The goals of treatment in POAG are to control IOP in a target range and to maintain stable optic nerves, RNFL and visual fields. The target IOP is different for each patient and is the pressure at which it is thought that the patient will not sustain further damage. Table 3.3 enlists the risk categories, which guide treatment targets.

POINTS TO REMEMBER

1. Intraocular pressure must be measured two or more times on separate occasions before labeling a patient as having elevated eye pressures. The risk for ONH damage increases 10 times when IOP more than or equal to 24 mm Hg, more than 40 times when IOP more than 30 mm Hg.
2. A gonioscopy must be performed to rule out angle closure and a slit lamp biomicroscopy, and/or imaging studies of the ONH must be performed to document optic nerve damage. A reliable visual field is essential for diagnosing glaucoma.
3. A pachymetry is required to give an indication of the eyes ability to withstand higher pressures. There are no validated nomograms for IOP correction on the basis of CCT. IOP corrected for corneal thickness, therefore, does not provide a valid basis for initiating or not initiating therapy.
4. The threshold for starting treatment and establishing target IOP for POAG must be lower for patients with increased risk factors. These include:
 - **Race:** West Africans, Afro-Caribbeans and Hispanics have the highest predilection for disease as well as blindness
 - **Family history:** Family history of glaucoma, or glaucoma-induced blindness: a first-degree relative with POAG increases the risk 9 times, and increases the risk of disease to and 23%.
 - **Age:** Younger patients
Chapter 3: Primary Open-Angle Glaucoma

- **Patients with myopia:** Myopic eyes may have weaker scleral support, thus becoming more susceptible to damage, with an additional familial link between the two diseases.

- Patients with poor access to repeat glaucoma investigations.

- **Thin CCT:** A CCT of less than or equal to 555 μm increased the risk three times as compared with a CCT more than 588 μm. For every 40 μm decrease in CCT, the relative risk of developing POAG is 1.71.

- **Optic nerve head hemorrhage:** Disc hemorrhage increases risk of POAG 3.7 times, although most eyes with the hemorrhage (87%) may not develop POAG over 5 years (OHTS).

- **Low Ocular Perfusion Pressure:** Diastolic ocular perfusion pressure (OPP) [diastolic blood pressure (BP) – IOP] less than or equal to 125 mm Hg may alter blood flow to the ONH and systolic OPP (systolic BP – IOP)

- **Ancillary risk factors:**
 - Genetic: Myocilin gene (MYOC) on chromosome 1 (3–4% of POAG)
 - Vasospasm: Migraine, Raynaud’s disease
 - Long-term steroid use
 - Obstructive sleep apnea.

- **Glaucoma suspect with moderate risk**
 - Fellow eye of established GON: excluding secondary unilateral glaucoma
 - OH with multiple risk factors: thin CCT, high IOP, suspicious discs
 - GLC gene mutations associated with severe POAG
 - Recurrent disc hemorrhages
 - Pseudoexfoliation
 - Younger age

 Monitor closely for change or treat depending on risk and patient preferences
 Treat if risk(s) increase(s) with ≥20% IOP reduction or 1 SD above population mean

- **Glaucoma suspect with low risk**
 - OH
 - Older age
 - Pigment dispersion with normal IOP
 - Glaucoma suspect disc, including disc asymmetry
 - Glaucoma family history
 - Less important:
 - Steroid responder
 - Myopia
 - β-peripapillary atrophy
 - Diabetes mellitus
 - Uveitis
 - Systemic hypertension

 Monitor

Table 3.3: Risk categories to guide treatment targets for primary open angle glaucoma.

<table>
<thead>
<tr>
<th>Risk category*</th>
<th>Description</th>
<th>Treatment targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Moderate-advanced GON with VFD+ Higher IOP Rapid progression Bilateral VFD Pigmentary or pseudoexfoliative glaucoma Advanced VFD or fixation threat Glaucoma-related visual disability Younger age</td>
<td>≥40% IOPR or 1–2 SD below population mean (9–12 mm Hg)</td>
</tr>
<tr>
<td>Moderate</td>
<td>Mild GON with early VFD Mild-moderate GON with low IOP Younger age</td>
<td>>30% IOP reduction or population mean</td>
</tr>
<tr>
<td>Glaucoma suspect with moderate risk</td>
<td>Fellow eye of established GON: excluding secondary unilateral glaucoma OH with multiple risk factors: thin CCT, high IOP, suspicious discs GLC gene mutations associated with severe POAG Recurrent disc hemorrhages Pseudoexfoliation Younger age</td>
<td>Monitor closely for change or treat depending on risk and patient preferences Treat if risk(s) increase(s) with ≥20% IOP reduction or 1 SD above population mean</td>
</tr>
<tr>
<td>Glaucoma suspect with low risk</td>
<td>OH Older age Pigment dispersion with normal IOP Glaucoma suspect disc, including disc asymmetry Glaucoma family history</td>
<td>Monitor</td>
</tr>
</tbody>
</table>

(GON: Glaucomatous optic neuropathy; VFD: Visual field defect; IOP: Intraocular pressure; IOPR: Intraocular pressure reduction; OH: Ocular hypertension; CCT: Central corneal thickness; GLC: Glaucoma; POAG: Primary open-angle glaucoma).

5. It is important to consider the economics of glaucoma therapy as also compliance issues. Quality of life costs of treatment versus no treatment must be weighed for the individual patient.

6. The risks and benefits of selective laser trabeculoplasty versus topical glaucoma therapy must be discussed with the patient.

7. Advanced visual field damage must be addressed surgically whenever required. Indications for surgery are discussed later in the book.
SUGGESTED READING

