Donald School Textbook of
ULTRASOUND IN
OBSTETRICS AND GYNECOLOGY

Fourth Edition

Editors
Asim Kurjak MD PhD
Professor Emeritus
Department of Obstetrics and Gynecology
Medical School University of Zagreb
President
International Academy of Perinatal Medicine
Zagreb, Croatia

Frank A Chervenak MD PhD
Professor and Chairman
Department of Obstetrics and Gynecology
Weill Medical College of Cornell University/New York
Presbyterian Hospital
New York, USA

The Health Sciences Publisher
New Delhi | London | Panama
Dedicated to

Ian Donald
(Our Teacher and Friend)
Contributors

Agnieszka Nocun
Gynecology and Oncology Clinic
University Hospital in Krakow
Krakow, Poland

Aida Salihagic Kadic
Professor
Department of Physiology
Medical School, University of Zagreb
Zagreb, Croatia

Ajlana Mulic-Lutvica
Senior Consultant
Department of Obstetrics and Gynecology
Uppsala University Hospital
Uppsala, Sweden

Alaa Ebrashy
Professor
Department of Obstetrics and Gynecology
Consultant in Fetal Medicine
Cairo University
Cairo, Egypt

Aleksandar Ljubic
Medigroup Hospital
Belgrade, Serbia
Dubrovnik International University
Libertas, Dubrovnik, Croatia

Alessandra Giocolano
Department of Obstetrics and Gynecology
III Obstetrics and Gynecology Unit
University Medical School of Bari
Bari, Italy

Alexandra Matias
Department of Obstetrics and Gynecology
Porto Medical Faculty of Medicine
Hospital of S João
Porto, Portugal

Anna Maroto
Hospital Universitari Vall d’Hebron
Barcelona, Spain

Antonella Cromi
Department of Obstetrics and Gynecology
University Medical School of Insubria
Varese, Italy

Aris J Antsaklis
Professor of Obstetrics and Gynecology
University of Athens
Department of Maternal and Fetal Medicine
Jaslo Maternity Hospital
Athens, Greece

Ashok Khurana
The Ultrasound Lab
New Delhi, India

Asim Kurjak
Professor Emeritus
Department of Obstetrics and Gynecology
Medical School University of Zagreb
President
International Academy of Perinatal Medicine
Zagreb, Croatia

Autumn Broady
Division of Maternal-Fetal Medicine
Department of Obstetrics, Gynecology and Women’s Health
John A Burns School of Medicine
University of Hawaii
Honolulu, Hawaii, USA

Berivoj Miskovic
Department of Obstetrics and Gynecology
Clinical Hospital Sveti Duh
Zagreb, Croatia

Biserka Funduk Kurjak
Professor Emeritus
Medical School University of Zagreb
Zagreb, Croatia

Carlota Rodo
Hospital Universitari Vall d’Hebron
Barcelona, Spain

Carmina Comas Gabriel
Fetal Medicine Unit
Department of Obstetrics, Gynecology and Reproductive Medicine
University Hospital Quiron Dexeus
Barcelona, Spain

Cihat Şen
Professor
Department of Perinatal Medicine
Cerrahpasa Medical School
University of Istanbul and Perinatal Medicine Foundation
Istanbul, Turkey

Eberhard Merz
Professor
Center for Ultrasound and Prenatal Medicine
Krankenhaus Nordwest
Frankfurt/Main, Germany

Edoardo Di Naro
Associate Professor
I Obstetrics and Gynecology Unit
University Medical School of Bari
Bari, Italy

Elena Carreras
Hospital Universitari Vall d’Hebron
Barcelona, Spain

Eva Meler Barrabés
I+D+i Obstetric Clinic
Department of Obstetrics, Gynecology and Reproductive Medicine
University Hospital Quirón Dexeus
Barcelona, Spain
Contributors

Milan Stanojevic
Professor
Department of Obstetrics and Gynecology
Medical School University of Zagreb
Neonatal Unit
University Hospital Sveti Duh
Zagreb, Croatia

Mohamed Ahmed Mostafa AboEllail
Department of Perinatology and Gynecology
Kagawa University Graduate School of Medicine
Ikenobe, Miki, Kagawa, Japan

Narendra Malhotra
Malhotra Nursing and Maternity Home (P) Ltd
Agra, Uttar Pradesh, India

Neharika Malhotra Bora
Malhotra Nursing and Maternity Home (P) Ltd
Agra, Uttar Pradesh, India

Robin B Kalish
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Weill Medical College of Cornell University
New York, USA

Sanja Kupesic Plavsic
Department of Obstetrics and Gynecology
Paul L. Foster School of Medicine
Texas Tech University Health Sciences Center
El Paso, Texas, USA

Selma Porovic
Department of Pediatric Dentistry
Public Health Center of the Sarajevo Canton
Sarajevo, Bosnia and Herzegovina

Sonal Panchal
Dr. Nagori's Institute for Infertility and IVF Ahmedabad, Gujarat, India

Tuangsit Wataganara
Associate Professor
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Faculty of Medicine Siriraj Hospital
Bangkok, Thailand

Ulrich Honeymoon
Department of Obstetrics, Gynecology
and Fetal-Maternal Medicine
Alzahra Hospital
Dubai, United Arab Emirates

Vijay Balasubramathy
Department of Reproductive Medicine
and Gynecologic Endocrinology
University Medical Center Maribor
Maribor, Slovenia

Vincenzo D’Addario
Fetal Medicine Unit
Department of Obstetrics and Gynecology
Medical School, University of Bari
Bari, Italy

William Goh
Clinical Instructor
Department of Obstetrics, Gynecology
and Women’s Health
John A Burns School of Medicine
University of Hawaii at Manoa
Honolulu, Hawaii, USA

Zoltán Papp
Professor
Maternity Private Clinic
Semmelweis University
Budapest, Hungary

Zoltán Tóth
Department of Obstetrics and Gynecology
Debrecen University
Debrecen, Hungary
The Ian Donald International School of Ultrasound bears testament to globalization in its most successful and worthwhile form. The school was founded in Dubrovnik in 1981; in the preface of the first edition in 2004 we were proud to announce that the School had grown to 8 branches. Since then, the growth has been meteoric and now consists of 112 branches in almost every corner of the globe. The reason for this success has been the tireless and selfless efforts of the world’s leading authorities in ultrasound who are willing to dedicate their valuable time without reimbursement to teach sonologists and sonographers throughout the world. Our teachers put national, religious, political, and other parochial considerations aside as they strive to improve the care of all women and fetal patients. Politicians in the countries represented by our School have much to learn from the purity of spirit that exists throughout our international family. We believe that Ian Donald is smiling down from heaven at the School that bears his name.

In the educational efforts of the 112 branches of the Ian Donald School, there is clearly a need for a textbook to complement and supplement lectures and didactic sessions. The first, second and the third textbooks were successful in this endeavor, but with the explosion of knowledge, it was clear that an expanded and updated fourth edition would be invaluable. The current edition of our textbook illustrates the latest developments including silhouette ultrasound and four-dimensional ultrasound which have been pioneered by our school. For the sake of simplicity, our book is divided into three sections. Section one deals with a variety of topics that lay the foundation for the rest of the book. Section two addresses the myriad subtopics in obstetric ultrasound that optimize the care of pregnant women and fetal patients. The last section addresses the essential role that ultrasound plays in the many dimensions of clinical gynecology.

A special word of thanks to Jadranka, our tireless secretary for her hundreds of dedicated hours of quality work.

We are grateful to many course directors and lecturers of the Ian Donald School who have enabled its growth and have selflessly contributed to this volume. In order to maximize the reach of this textbook by minimizing its price, all contributors have waived any honorarium or royalty. Their dedication to the dream of globalized quality ultrasound has enabled its reality.

Asim Kurjak
Frank A Chervenak
Preface to the First Edition

Ultrasound is the backbone of modern obstetric and gynecology practice. For those of us old enough to remember the dark ages of clinical practice prior to ultrasound, this is not an overstatement. Younger physicians may find it hard to imagine the clinical realities of doctors who delivered undiagnosed twins presenting at delivery, who performed unnecessary surgeries for the clinical suspicion of a pelvic mass that was not present, and who consoled anguished parents when an anomalous infant was born unexpectedly. Recent technological breakthroughs in diagnostic ultrasound, including the advent of color Doppler, power Doppler, three-dimensional and four-dimensional imaging, have led ultrasound to surpass the expectations of Ian Donald, its visionary father.

The Ian Donald School was founded in 1981 and is devoted to international education and research cooperation concerning all aspects of diagnostic ultrasound. The first chapter was founded in Dubrovnik at that time and has now expanded to 7 additional national branches.

To facilitate the educational efforts of the Ian Donald School, we believed a textbook would be of value. The text is divided into three parts general aspects, obstetrics, and gynecology. All contributors are either present or former teachers in the 8 branches of the Ian Donald School. We believe this comprehensive text with state-of-the-art images will be of value for both new learners and experienced practitioners.

We are grateful to all of the teachers in the School and especially to all of the contributors to this textbook for their tireless efforts to enhance the quality of ultrasound practice throughout the world.

Asim Kurjak
Frank A Chervenak
Contents

Section 1

General Aspects

Chapter 1. Safety of Ultrasound in Obstetrics and Gynecology 3
 Kazuo Maeda
 • Diagnostic Ultrasound Devices and Ultrasound Intensity 4
 • Non-hazardous Exposure Time of the Fetus to the Heat 4
 • Diagnostic Ultrasound Instruments and Ultrasound Intensity 4
 • Ultrasound Intensity of Doppler Ultrasound 4
 • The Effect of Direct Heating on Mammal Fetuses 5
 • The Ultrasound Intensity of no Bioeffect 5
 • “Alara” Principle 5
 • Absolute Temperature of the Tissue Exposed to Ultrasound 5
 • Thermal and Mechanical Safeties of Diagnostic Ultrasound by Using
 Thermal and Mechanical Indices 5
 • Thermal Safety of Ultrasound 6
 • Mechanical Index of Ultrasound 7
 • Safety of Diagnostic Ultrasound Devices 7
 • Nonmedical Use of Diagnostic Ultrasound 8
 • Safe Level of Ultrasound Intensity 8

Chapter 2. Development of Three-dimensional Ultrasound 10
 Kazunori Baba
 • What can 3D Ultrasound Do? 10
 • Technical Aspects of 3D Ultrasound 11
 • Practical Tips 21

Chapter 3. Artifacts, Pitfalls and Normal Variants 26
 Ivica Zalud, Frederico Rocha
 • Mechanism 27
 • Classification 27
 • Reverberation 27
 • Shadowing 28
 • Enhancement 29
 • Mirror Artifacts 29
 • Refraction (Duplication) and Side Lobes 30
 • Other Artifacts 30
 • Doppler Ultrasound Artifacts 30
 • 3D Ultrasound Artifacts 32
Chapter 4.
Routine Use of Obstetric Ultrasound
Geeta Sharma, Stephen T Chasen, Frank A Chervenak
• Basic Ultrasound 34
• Safety 35
• Guidelines for the Use of Obstetric Ultrasound 36
• Randomized Controlled Trials of Routine Ultrasound 39
• Critique of Radius Trial 42
• Meta-analyses of Randomized Controlled Trials 43
• Diagnostic Ability of Routine Ultrasound 43
• First Trimester Ultrasonography 46
• Ethical Dimensions 48

Chapter 5.
Medicolegal Issues in Obstetric and Gynecologic Ultrasound
Frank A Chervenak, Judith L Chervenak
• Medical Negligence 53
• Guidelines 54
• Instrumentation and Safety 54
• Documentation 54
• Indications 54
• Examination Content 55
• Quality Control 56
• Litigation Related to Ultrasound 56
• Nonmedical Use of Ultrasonography 57

Section 2

Obstetrics

Chapter 6.
Fetal and Maternal Physiology and Ultrasound Diagnosis
Aida Salihagic Kadic, Maja Predojevic, Asim Kurjak
• Placenta 61
• Development of the Placenta 61
• Abnormal Placental Development and Ultrasound 63
• Functions of the Placenta 65

Chapter 7.
HDlive Silhouette and HDlive Flow: New Application of 3D Ultrasound in Prenatal Diagnosis
Ritsuko Kimata Pooh
• HDlive (High Definition Live) Technique 88
• HDlive Flow Imaging Technology 97

Chapter 8.
Normal and Abnormal Early Pregnancy
Tamara Illescas, Waldo Sepulveda
• Intrauterine Pregnancy of Unknown Viability 107
• Normal Early Pregnancy 107
• Abnormal Early Pregnancy 113
• Diagnostic Ultrasound Criteria for Early Pregnancy Loss 115
• Ultrasound High-risk Indicators for Early Pregnancy Loss 116
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Ectopic Pregnancy: Diagnosing and Treating the Challenge</td>
<td>120</td>
</tr>
<tr>
<td>Sanja Kupesic Plavsic, Sonal Panchal, Ulrich Honemeyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The Role of Biochemical Markers in Ectopic Pregnancy</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>• The Role of Ultrasound in the Diagnosis of an Ectopic Pregnancy</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>• Other Sites of Implantation</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>• Therapy</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sonographic Determination of Gestational Age</td>
<td>143</td>
</tr>
<tr>
<td>Robin B Kalish, Frank A Chervenak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assessment of Gestational Age by Last Menstrual Period</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>• Multifetal Pregnancies</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>• Choosing a Due Date</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>• Ultrasound Pitfalls</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Trophoblastic Diseases</td>
<td>151</td>
</tr>
<tr>
<td>Kazuo Maeda, Asim Kurjak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Classification, Development and Pathology</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>• Complete Hydatidiform Mole</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>• Partial Hydatidiform Mole</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>• Invasive Hydatidiform Mole</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>• Choriocarcinoma</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>• Placental Site Trophoblastic Tumor</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>• Epithelioid Trophoblastic Tumor</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>• Persistent Trophoblastic Disease</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>• Symptoms of Gestational Trophoblastic Disease</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>• Diagnosis of Gestational Trophoblastic Disease</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>• Therapy of Trophoblastic Diseases</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>First-trimester Ultrasound Screening for Fetal Anomalies</td>
<td>167</td>
</tr>
<tr>
<td>Jon Hyett, Jiri Sonek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• An Argument for Screening in the First Trimester</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>• Elements of First-trimester Fetal Screening</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>• Quality Assurance in First-trimester Ultrasound</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>• Screening Multiple Pregnancies for Down Syndrome</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>• First Trimester Screening for Fetal Anomalies Other than Chromosomal Defects</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fetal Biometry</td>
<td>191</td>
</tr>
<tr>
<td>Frederico Rocha, Ivica Zalud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• First-trimester Measurements</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>• Second-trimester Measurements</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Doppler Ultrasound: State of the Art</td>
<td>198</td>
</tr>
<tr>
<td>William Goh, Ivica Zalud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pulsed Doppler Ultrasound in Maternal Fetal Medicine</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>• Color and Power Doppler Imaging</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>• Doppler Ultrasound in Three Dimensions</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Guidelines for the Doppler Assessment of the Umbilical and Middle Cerebral Arteries in Obstetrics</td>
<td>206</td>
</tr>
<tr>
<td>Autumn Broady, Ivica Zalud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Umbilical Artery</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>16</td>
<td>Ultrasound and Doppler Management of Intrauterine Growth Restriction</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>José M Carrera, Francesc Figueras, Eva Meier Barrabés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Incidence</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>• Screening</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>• Diagnosis</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>• Diagnosis of the Type of SGA</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>• Study of Fetal Deterioration</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>• Obstetric Management</td>
<td>218</td>
</tr>
<tr>
<td>17</td>
<td>Fetal Central Nervous System</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Ritsuko Kimata Pooh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transvaginal Neurosonography</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>• Basic Anatomical Knowledge of the Brain</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>• Transvaginal 3D Sonographic Assessment of Fetal CNS</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>• New Application of HDlive Silhouette and Flow in Fetal Neurology</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>• 3D/4D Sonography and MRI: Alternatives or Complementaries</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>• Ventriculomegaly and Hydrocephalus</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>• Congenital CNS Anomalies</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>• Acquired Brain Abnormalities In Utero</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>• Future Aspect</td>
<td>268</td>
</tr>
<tr>
<td>18</td>
<td>Corpus Callosum and Three-dimensional Ultrasound</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Sonila Pashaj, Eberhard Merz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Three-dimensional Over Two-dimensional Sonography in the Demonstra</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>tion of the Corpus Callosum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Demonstration of the Normal Development of the Corpus Callosum Us</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>ing 3D Ultrasonography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Biometry of the Fetal Corpus Callosum by Three-dimensional Ultrasound</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>• Detection of Fetal Corpus Callosum Abnormalities by Means of 3D Ultraso</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>sound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discussion</td>
<td>280</td>
</tr>
<tr>
<td>19</td>
<td>Detection of Limb Malformations: Role of 3D/4D Ultrasound</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Eberhard Merz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Incidence of Limb Anomalies</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>• Etiology</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>• 3D Ultrasound Appearance of the Limbs/Fetal Skeleton</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>• 4D Ultrasound Appearance of the Limbs/Fetal Skeleton</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>• Transvaginal/Transabdominal Ultrasound Examination of the Limbs/Fetal</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>etalon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• General Aspects of the Sonographic Detection of Limb Malformations</td>
<td>288</td>
</tr>
<tr>
<td>20</td>
<td>The Fetal Thorax</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Aleksandar Ljubic, Tatjana Bozanovic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Developmental Anatomy and Ultrasonographic Correlations</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>• Scanning Techniques</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>• Pathology</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>• Cystic Adenomatoid Malformation</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>• Fetal Hydrothorax</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>• Fetal Pleural Effusions</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>• Lung Sequestration/Pulmonary Sequestration</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>• Congenital Cystic Lung Lesions</td>
<td>307</td>
</tr>
</tbody>
</table>
Chapter 21. Three-dimensional and Four-dimensional Evaluation of the Fetal Heart 310
Carmina Comas Gabriel
- Impact of Congenital Heart Diseases: Epidemiology and Population at Risk 310
- Prenatal Diagnosis of Congenital Heart Diseases: Current Situation 311
- History of Fetal Echocardiography 312
- New Perspectives in Three- and Four-dimensional Fetal Echocardiography 313
- Clinical Application of 3D or 4D in Fetal Cardiovascular System 315

Spatiotemporal Imaging Correlation: A New Approach to Three- and
Four-dimensional Evaluation of the Fetal Heart 316
- Technical Bases 316
- Advantages 319
- Limitations 321
- Current Applications and New Perspectives 322
- First Spanish Study in Spatiotemporal Image Correlation Technology 327

Chapter 22. Spatial and Temporal Image Correlation and Other Volume Ultrasound
Techniques in the Fetal Heart Evaluation After 10 Years of Practice 333
Marcin Wiechec, Agnieszka Nocun
- Technical Aspects 333
- The Process of STIC Acquisition 335
- STIC in the First Trimester 350
- Three-dimensional Printing 353

Chapter 23. Malformations of the Gastrointestinal System 358
Vincenzo D'Addario, Grazia Volpe
- Anterior Abdominal Wall Defects 360
- Bowel Disorders 366
- Nonbowel Cystic Masses 370

Chapter 24. Diagnostic Sonography of Fetal Urinary Tract Anomalies 373
Zoltán Tóth, Zoltán Papp
- Ultrasound Imaging of Normal Fetal Kidneys and Urinary Tract 374
- Renal Agenesis 376
- Cystic Renal Dysplasia 377
- Obstructive Uropathy 380
- Renal Tumors 386
- Determination of Fetal Renal Function 387
- Treatment of Prenatally Diagnosed Renal and Urinary Tract Anomalies 387

Chapter 25. Fetal Musculoskeletal System 390
Anna Maroto, Carlota Rodó, Elena Carreras
- Normal US Appearance of Fetal Skeleton 390
- Osteochondrodysplasias 394
- Reductional Defects 406
- Hand and Foot Deformities 412
- Polydactyly 416
- Syndactyly 419
- Hemivertebrae 419
- Fetal Akinesia Deformation Sequence 420
- Other Skeletal Defects 420
Chapter 26. Sonographic Assessment of the Umbilical Cord 424

Edoardo Di Naro, Luigi Raio, Antonella Cromi, Alessandra Giocolano

• Morphology 424
• “Lean” Umbilical Cord 425
• Large Umbilical Cord 426
• Discordant Umbilical Artery 426
• Single Umbilical Artery 428
• Umbilical Cord Angioarchitecture 428
• Umbilical Cord and Aneuploidies 432

Chapter 27. Placenta: From Basic Facts to Highly Sophisticated Placenta Accreta Story 435

Giuseppe Calì, Gabriella Minneci

• Anatomopathological Aspects of Placenta 435

Chapter 28. Measurement of Cervical Length 454

Oliver Vasilj, Berivoj Miskovic

• General Facts About Uterine Cervix 454

Chapter 29. Monochorionicity: Unveiling the Black Box 459

Alexandra Matias, Nuno Montenegro

• The Monozygosity Phenomenon 460
• How Much Identical are MZ Twins? 462
• The Limits of Zygosity Testing: Postnatal Importance 465
• Monochorionic Pregnancy as a High-risk Pregnancy: Twin-to-twin Transfusion Syndrome as a Paradigm to Treat 468
• Discordance of Fetal Growth: What is Adaptation, Promotion and Growth Restriction in Multiples? 473
• Multiples and Cerebral Palsy: The Effect of Prematurity or More? 474

Chapter 30. Ultrasonography and Birth Defects 479

Narendra Malhotra, Neharika Malhotra Bora

• Causes 480
• Ultrasonography for Chromosomal Abnormalities and Congenital Defects 481
• Trisomy 13 (Patau Syndrome) 484
• Triplody 484
• Turner Syndrome 484
• Trisomy 18 (Edwards Syndrome) 484
• Neural Tube Defects 484
• Role of Fetal Echocardiography in First and Second Trimester 485
• Ultrasonography for Extra Fetal Evaluation 487
• Ultrasonography for Fetal Morphology Evaluation 489
• Ultrasound Technology and Advancement in Screening 490
• Screening Methods and Tests 492

Chapter 31. Postpartum Ultrasound 495

Ajlana Mulic-Lutvica

• Normal Puerperium 495
• Retained Placental Tissue 499
• Postpartum Endometritis 504
• Cesarean Section 506
• Uncommon But Potentially Life-threatening Causes of Postpartum Bleeding 506
• Placenta Accreta/Increta/Percreta 506
• Pregnancy Luteomas 508
• Congenital Uterine Malformations 508
• Postpartum Urinary Retention 510
• Puerperal Mastitis and Breast Abscess 510

Chapter 32. Three-dimensional Sonoembryology 515
Ritsuko Kimata Pooh, Kohei Shiota, Asim Kurjak
• Modern Embryology by Magnetic Resonance Microscopy and Computer Graphics 515
• Normal Embryo Visualization by Three-dimensional Sonoembryology 517
• Fetal Abnormalities in Early Gestation 527

Chapter 33. Three-dimensional Ultrasound in the Visualization of Fetal Anatomy in the Three Trimesters of Pregnancy 552
Giovanni Centini, Lucia Rosignoli
• First Trimester of Pregnancy 553
• Signs Predictive of Aneuploidy and Structural Embryo–Fetal Alterations in the First Trimester 575
• Second and Third Trimesters 578

Chapter 34. Three-dimensional Ultrasound in Detection of Fetal Anomalies 609
Ritsuko Kimata Pooh, Asim Kurjak
• Prenatal Diagnosis of Anatomical Congenital Anomalies 611

Chapter 35. Fetal Behavior Assessed by Four-dimensional Sonography 642
Asim Kurjak, Panagiotis Antsaklis, Milan Stanojevic, Selma Porovic
• The Evolution of Fetal Movements and Fetal Behavior Assessment with Ultrasound 643
• Neonatal Aspects of Fetal Behavior 659

Chapter 36. Ultrasound-guided Fetal Invasive Procedures 664
Aris J Antsaklis, George A Partsinevelos
• Amniocentesis 664
• Chorionic Villus Sampling 666
• Fetal Blood Sampling 669
• Celocentesis 670
• Embryoscopy–Fetoscopy 671
• Multifetal Pregnancy Reduction and Selective Termination 673
• Twin-to-twin Transfusion Syndrome 675
• Fetal Biopsy Procedures in Prenatal Diagnosis 678
• Congenital Diaphragmatic Hernia 678
• Fetal Pleural Effusion 680
• Interventional Fetal Cardiology 681

Chapter 37. Chorionic Villus Sampling 686
Cihat Sen
• Technical Aspects of the Procedure 687
• Complications, Pregnancy Loss and Safety 689

Chapter 38. Amniocentesis and Fetal Blood Sampling 696
Aris J Antsaklis, George A Partsinevelos
• Amniocentesis 696
• Fetal Blood Sampling 699
Chapter 39. Invasive Genetic Studies in Multiple Pregnancy
Aris J Antsaklis, George A Partsinevelos
- Incidence of Structural Fetal Anomalies in Multiples 704
- Risk of Aneuploidy in Multiples 704
- Indications for Prenatal Diagnosis 705
- Invasive Procedures for Prenatal Diagnosis 705
- Fetal Blood Sampling 707

Chapter 40. Overview of Fetal Therapy
Tuangsit Wataganara
- History of Fetal Therapy 710
- Fetal Therapy Segment 713
- Principles of Family Counseling for Fetal Therapy 713
- Principles and Types of Fetal Therapy 713
- Ethics of Fetal Therapy 714

Chapter 41. In Utero Pharmacologic Treatment
Tuangsit Wataganara
- Principles and Types of In Utero Pharmacologic Treatment 716
- Fetal Congenital Pulmonary Airway Malformations 717
- Fetal Arrhythmias 718
- Fetal Thyroid Diseases 720

Chapter 42. Ultrasound-guided Fetal Intervention
Tuangsit Wataganara
- Rationale of Ultrasound-guided Fetal Intervention 723
- Fetal Paracentesis 724
- Fetal Shunting Procedures 726
- Percutaneous Sclerotherapy (and Pleurodesis) 728

Chapter 43. In Utero Stem Cell Transplantation and Gene Therapy
Tuangsit Wataganara
- History of In Utero Stem Cell Transplantation 732
- Rationale for In Utero Stem Cell Transplantation 733
- Human Experiences of In Utero Stem Cell Transplantation 733
- History of In Utero Gene Therapy 736
- Rationale for In Utero Gene Therapy 737
- Application of In Utero Gene Therapy 737
- Risks of In Utero Gene Therapy 737

Chapter 44. Fetoscopic Interventions
Tuangsit Wataganara
- Principles of Fetoscopy 741
- Equipments and Techniques 742
- Complicated Monochorionic Twins 743
- Severe Congenital Diaphragmatic Hernia 750
- Lower Urinary Tract Obstruction 754

Chapter 45. Open Fetal Surgery
Tuangsit Wataganara
- Rationale of Open Fetal Surgery 764
Technical Aspects of Open Fetal Surgery 765
Fetal Meningomyelocele 766
Fetal Tumor 770
Congenital Pulmonary Airway Malformation 778

Chapter 46. Establishment of Fetal Therapy Center 781
Tuangsit Wataganara
Training Requirements 782
Definition of Fetal Therapy Center 784
Counseling Service at Fetal Therapy Centers 785
Personnel Requirements to Set Up Fetal Therapy Center 785
Maintenance of the Expertise 786
Quality Assurance of Fetal Therapy Center 786
Importance of the Follow-up Data 788
Extrinsic Factors that can Affect the Performance of Fetal Therapy Program 788

Chapter 47. Fetal Face and Four-dimensional Ultrasound 791
Mohamed Ahmed Mostafa AboEllail, Toshiyuki Hata
Fetal Face Examination 791
Timing of Four-dimensional Ultrasound Visualization of Facial Movements 792
Different Patterns of Fetal Facial Movements Visualized by Four-dimensional Ultrasound 792
Four-dimensional Ultrasound and Fetal Emotion-like Movements 794
Four-dimensional Ultrasound of Fetal Face and Kurjak’s Antenatal Neurodevelopment Test 795
Fetal Observable Movement System and Four-dimensional Ultrasound 796
HDlive of Fetal Face 797
Limitations of Four-dimensional Ultrasound Use in Fetal Face Examination 797

Chapter 48. Three-dimensional Ultrasound for the Detection of Fetal Syndromes 800
Sonila Pashaj, Eberhard Merz
Apert Syndrome 801
Holt–Oram Syndrome 802
Walker–Warburg Syndrome 803
Van der Woude Syndrome 803
Goldenhar Syndrome 804
De Grouchy Syndrome 805
Amniotic Band Syndrome 806
Nager Syndrome 806
Treacher–Collins Syndrome 807
Trisomy 21 (Down Syndrome) 808
Trisomy 13 (Patau Syndrome) 809
Trisomy 18 (Edwards Syndrome) 809

Chapter 49. Ultrasound Role in Perinatal Infection 817
Alaa Ebrashy
Ultrasound Features in Congenital Infection 817
What is the Role of Invasive Procedures in the Diagnosis of Intrauterine Infection? 819
Prenatal Management of Specific Congenital Infections Using Ultrasound Markers and Invasive Procedures 820
Toxoplasma 821
Section 3

Gynecology

Chapter 50. Normal Female Reproductive Anatomy
Sanja Kupesic Plavsic, Ulrich Honemeyer, Asim Kurjak
- Uterus 827
- Fallopian Tube 831
- Ovaries 831

Chapter 51. Uterine Lesions: Advances in Ultrasound Diagnosis
Sanja Kupesic, Ulrich Honemeyer, Asim Kurjak
- Normal Uterus 839
- Endometrial Polyps 840
- Intrauterine Synechiae (Adhesions) 842
- Adenomyosis 843
- Endometrial Hyperplasia 844
- Endometrial Carcinoma 846
- Leiomyoma 850
- Leiomyosarcoma 855
- Advances in Ultrasound Imaging 856

Chapter 52. Uterine Fibroid
Aleksandar Ljubić, Tatjana Božanović
- Elastography 863
- Treatment 867
- Uterine Fibroid and Pregnancy 870
- Fibroids and Sterility 870
- Fibroid-like Conditions 872

Chapter 53. Three-dimensional Static Ultrasound and Three-dimensional Power Doppler in Gynecologic Pelvic Tumors
Juan Luis Alcázar
- Endometrial Cancer 875
- Uterine Leiomyomas and Sarcomas 879
- Cervical Cancer 880
- Adnexal Tumors 882
- Other Applications 885

Chapter 54. Ultrasound in Human Reproduction
Veljko Vlaisavljevic, Jure Knez
- Folliculogenesis 890
- Ultrasound and Follicular Growth 891
- Ultrasound and Ovulation 892
- Ultrasound as the Tool for Prediction of Success and for Monitoring in Medically Assisted Reproduction 894
Contents

• Ultrasound Monitoring in Unstimulated Cycles 896
• The Role of Sonographic Evaluation of the Endometrium 896

Chapter 55. New Insights into the Fallopian Tube Ultrasound 901
Sanja Kupesic, Ulrich Honemeyer, Asim Kurjak
• Pelvic Inflammatory Disease 901
• Benign Tumors of the Fallopian Tube 910
• Malignant Tumors of the Fallopian Tube 911
• Fallopian Tube Torsion 914

Chapter 56. Sonographic Imaging in Infertility 916
Sanja Kupesic Plavsic, Sonal Panchal
• Uterine Causes of Infertility 916
• Ovarian Causes of Infertility 930
• Polycystic Ovarian Syndrome 934

Chapter 57. Two-dimensional and Three-dimensional Saline Infusion Sonography and Hystero-contrast-salpingography 948
Sanja Kupesic Plavsic, Sonal Panchal
• Ultrasound Assessment of the Uterus and the Fallopian Tubes 949
• 3D and 4D Hy-Co-Sy with Automated Coded Contrast Imaging and SonoVue 960

Chapter 58. Guided Procedures Using Transvaginal Sonography 965
Sanja Kupesic Plavsic, Sonal Panchal
• Transvaginal Puncture Procedures 966
• Conservative Management of an Ectopic Pregnancy 972
• Other Applications 973

Chapter 59. Ultrasound in the Postmenopause 976
Sonal Panchal, Biserka Funduk Kurjak
• Challenges of the Postmenopause 977
• Instrumentation 977
• Scanning in the Postmenopause 977
• Postmenopausal Ovary 979
• The Postmenopausal Uterus 985
• Postmenopausal Endometrium 989

Chapter 60. The Use of Ultrasound as an Adjunct to the Physical Examination for the Evaluation of Gynecologic and Obstetric Causes of Acute Pelvic Pain 997
Sanja Kupesic Plavsic, Ulrich Honemeyer
• Gynecologic Etiologies of Acute Pelvic Pain 997

Chapter 61. Ultrasound in Urogynecology 1014
Ashok Khurana
• Clinical Considerations 1014
• Investigations 1015
• Technical Concepts, Protocols, Norms and Ultrasound Findings 1015
Chapter 62. Three/Four-dimensional, Vocal, HDlive and Silhouette Ultrasound in Obstetrics, Reproduction and Gynecology

Juan Carlos Castillo, Francisco Raga, Oscar Caballero, Francisco Bonilla Jr, Fernando Bonilla-Musoles

Obstetrics: First and Second Trimester Normal Fetal Scan

- Normal HDlive Image
- Pathological Images Using 3D/4D Ultrasound and HDlive
- Radiance System Architecture or Silhouette HDlive
- Comments to these New US Modes
- Day-by-day Ultrasonographic Characteristics Between the 28 Days and 35 Days of Pregnancy (4th to 5th Week)
- Ultrasonographic Characteristics Between the 5th and 6th Week
- Ultrasonographic Characteristics Between the 6th and 7th Week
- Ultrasonographic Characteristics in the 7th Week
- Ultrasonographic Characteristics in the 8th Week
- Ultrasonographic Characteristics in the 9th Week
- Ultrasonographic Characteristics in the 10th Week
- Ultrasonographic Characteristics in the 11th Week
- Ultrasonographic Characteristics in the 12th Week
- Ultrasonographic Appearance from the 13th Week Onwards
- Findings in the 15th Week

Reproduction

- Normal Cycle
- IVF Stimulation Cycles
- Evaluation of Gynecological Pathologies Related with Infertility
- Polycystic Ovaries and the Ultrasonographic Evaluation
- State of the Art: New Criteria and US Modes
- Polycystic Ovarian Morphology
- Ovarian Medulla
- Medulla Vascularization
- Intrauterine Devices
- Identification of the IUD Type

Gynecology

- Normal Uterus and Benign Uterine Tumors
- Uterus
- Endometrial and Myometrial Pathologies
- Müllerian Malformations
- Endometrial Hyperplasia and Cancer, Fallopian Tube Pathology
- Cancer
- Differentiation of Benign and Malignant Ovarian Masses
- Criteria for Categorizing Benign vs Malignant Ovarian Masses

Index
Accurate assessment of gestational age is fundamental in managing both low- and high-risk pregnancies. In particular, uncertain gestational age has been associated with adverse pregnancy outcomes including low birth weight, spontaneous preterm delivery and perinatal mortality, independent of maternal characteristics. Making appropriate management decisions and delivering optimal obstetric care necessitates accurate appraisal of gestational age. For example, proper diagnosis and management of preterm labor and post-term pregnancy requires an accurate estimation of fetal age. Many pregnancies considered to be preterm or post-term are wrongly classified. Unnecessary testing, such as fetal monitoring and unwarranted interventions, including induction for supposed post-term pregnancies may lead to an increased risk of maternal and neonatal morbidity. In addition, pregnancies erroneously thought to be preterm may be subject to avoidable and expensive hospitalization stays as well as excessive and potentially dangerous medication use including tocolytic therapy. In one study by Kramer et al. that assessed over 11,000 pregnant women who underwent early ultrasound, one-fourth of all infants who would be classified as premature and one-eighth of all infants who would be classified as post-term by menstrual history alone would be misdiagnosed. Accurate pregnancy dating may also assist obstetricians in appropriately counseling women who are at imminent risk of a preterm delivery about likely neonatal outcomes.

Precise knowledge of gestational age is also essential in the evaluation of fetal growth and the detection of intrauterine growth restriction. During the third trimester, fundal height assessment may be helpful in determining appropriate fetal growth by comparing the measurement to a known gestational age. In addition, dating a pregnancy is imperative for scheduling invasive diagnostic tests, such as chorionic villus sampling (CVS) or amniocentesis, as appropriate timing can influence the safety of the procedure. Certainty of gestational age is also important in the interpretation of biochemical serum screening test results and may help avoid undue parental anxiety from miscalculations and superfluous invasive procedures, which may increase the risk of pregnancy loss. Assessment of gestational age is also crucial for counseling patients regarding the option of pregnancy termination.
ASSESSMENT OF GESTATIONAL AGE BY LAST MENSTRUAL PERIOD

Traditionally, the first day of the last menstrual period (LMP) has been used as a reference point, with a predicted delivery date 280 days later. The estimated date of confinement (EDC) can also be calculated by Nägele’s rule by subtracting three months and adding seven days to the first day of the last normal menstrual period. However, there are inherent problems in assessing gestational age using the menstrual cycle. One obstacle in using the LMP is the varying length of the follicular phase and the fact that many women do not have regular menstrual cycles. Walker et al. evaluated 75 ovulatory cycles using luteinizing hormone levels as a biochemical marker and found that ovulation occurred within a wide range of 8–31 days after the LMP. Similarly, Chiazze et al. collected over 30,000 recorded menstrual cycles from 2,316 women and found that only 77% of women have average cycle lengths between 25 and 31 days. Another barrier in using a menstrual history is that many women do not routinely document or remember their LMP. Campbell et al. demonstrated that of more than 4,000 pregnant women, 45% were not certain about their LMP as a result of poor recall, irregular cycles, bleeding in early pregnancy or oral contraceptive use within two months of conception.

Clinical Methods for Determining Gestational Age

Other methods used to assess gestational age have included uterine size assessment, time at quickening and fundal height measurements. However, these clinical methods are often suboptimal. Robinson noted that uterine size determination by bimanual examination produced incorrect assessments by more than two weeks in over 30% of patients. Similarly, fundal height estimation does not provide a reliable guide to predicting gestational age. Beazly et al. found up to eight weeks variation in gestational age for any particular fundal height measurement during the second and third trimesters. In addition, quickening or initial perception of fetal movement can vary greatly among women. While these modalities may be useful adjuncts, they are unreliable as the sole tool for the precise dating of a pregnancy.

Ultrasound Assessment of Gestational Age

In recent years, ultrasound assessment of gestational age has become an integral part of obstetric practice. Correspondingly, prediction of gestational age is a central element of obstetric ultrasonography. Fetal biometry has been used to predict gestational age since the time of A-mode ultrasound. Currently, the sonographic estimation is derived from calculations based on fetal measurements and serves as an indirect indicator of gestational age. Over the past three decades, numerous equations regarding the relationship between fetal biometric parameters and gestational age have been described and have proven early antenatal ultrasound to be an objective and accurate means of establishing gestational age.

First Trimester Ultrasound

Ultrasound assessment of gestational age is most accurate in the first trimester of pregnancy. During this time, biological variation in fetal size is minimal. The gestational sac is the earliest unequivocal sonographic sign of pregnancy. Historically, gestational sac size and volume had been used as a means to estimate gestational age. This structure sonographically resembles a fluid filled sac surrounded by a bright echogenic ring, the developing chorionic villi, within the endometrial cavity (Fig. 10.1). This sac can be visualized as early as five menstrual weeks using transvaginal sonography. More recently, studies have shown that fetal age assessment by gestation sac measurement is not reliable, with a prediction error up to two weeks. Another imprecise yet often used modality is the sonographic visualization of distinct developing structures. During the fifth menstrual week, the yolk sac—the earliest embryonic structure detectable by sonography, can be visualized prior to the appearance of the fetal pole. And, by the end of the 6th menstrual week, a fetal pole with cardiac activity should be present (Fig. 10.2). Subsequently, the presence of limb buds and midgut herniation can be seen at approximately 8 weeks of gestation. However, these
has been well documented in the medical literature. Specifically, gestational age can be estimated safely with a maximal error of 3–5 days in the first trimester.6,16,32,33 In summary, first trimester ultrasound is a useful and reliable tool in the assessment of gestational age. In particular, sonographic measurement of the CRL during the first trimester is the best parameter for estimating gestational age and is accurate within five days of the actual conception date.30,32

Second Trimester Ultrasound

Although routine ultrasonography at 18–20 weeks gestation historically has been controversial,34 it is currently practiced by most obstetricians in the United States.35 In addition to screening for fetal anomalies, sonographic gestational age assessment may be of clinical value in that it has been shown to decrease the incidence of post-term as well as preterm diagnoses and thus the administration of tocolytic agents.36,37 In addition, uncertain gestational age has been associated with higher perinatal mortality rates and an increase of low birth weight and spontaneous preterm delivery.1

Ultrasound Parameters

When choosing the optimal parameter for estimating gestational age, it is essential that the structure has little biologic variation, is growing at a rapid pace and can be measured with a high degree of reproducibility.38 In the past, the biparietal diameter (BPD) had been described as a reliable method of determining gestational age.9,12 While the BPD was the first fetal parameter to be clinically utilized in the determination of fetal age in the second trimester, more recent studies have evaluated the use of several other biometric parameters including head circumference (HC),39 abdominal circumference (AC),40 femur length (FL),41 foot length,42 ear size,43 orbital diameters,44,45 cerebellum diameter46,47 and others. In a large study by Chervenak et al. that evaluated pregnancies conceived by IVF and thus had known conception dates, HC was found to be the best predictor of gestational age compared with other commonly used parameters (Table 10.1).48 This finding is in agreement with that of Hadlock,10 Ott11 and Benson49 who compared the performance of HC, BPD, FL and AC in different populations.

The HC should be measured in a plane that is perpendicular to the parietal bones and traverses the third ventricle and thalami (Fig. 10.3). Three adequate CRL measurements should be taken and the average used for gestational age determination.31 The accuracy of the CRL measurement developmental landmarks can only provide rough estimates to the actual fetal age.

In 1973, Robinson reported using the CRL for determining gestational age.28 Since that time, ultrasound equipment, techniques and prediction formulas have substantially improved and allow for more rapid and precise measurement of the CRL and determination of gestational age.29,30 For the best results, the fetus should be imaged in a longitudinal plane. The greatest embryonic length should be measured by placing the calipers at the head and rump of the fetus (Fig. 10.3). Three adequate CRL measurements should be taken and the average used for gestational age determination.31 The accuracy of the CRL measurement has been well documented in the medical literature. Specifically, gestational age can be estimated safely with a maximal error of 3–5 days in the first trimester.6,16,32,33

In summary, first trimester ultrasound is a useful and reliable tool in the assessment of gestational age. In particular, sonographic measurement of the CRL during the first trimester is the best parameter for estimating gestational age and is accurate within five days of the actual conception date.30,32

Second Trimester Ultrasound

Although routine ultrasonography at 18–20 weeks gestation historically has been controversial,34 it is currently practiced by most obstetricians in the United States.35 In addition to screening for fetal anomalies, sonographic gestational age assessment may be of clinical value in that it has been shown to decrease the incidence of post-term as well as preterm diagnoses and thus the administration of tocolytic agents.36,37 In addition, uncertain gestational age has been associated with higher perinatal mortality rates and an increase of low birth weight and spontaneous preterm delivery.1

Ultrasound Parameters

When choosing the optimal parameter for estimating gestational age, it is essential that the structure has little biologic variation, is growing at a rapid pace and can be measured with a high degree of reproducibility.38 In the past, the biparietal diameter (BPD) had been described as a reliable method of determining gestational age.9,12 While the BPD was the first fetal parameter to be clinically utilized in the determination of fetal age in the second trimester, more recent studies have evaluated the use of several other biometric parameters including head circumference (HC),39 abdominal circumference (AC),40 femur length (FL),41 foot length,42 ear size,43 orbital diameters,44,45 cerebellum diameter46,47 and others. In a large study by Chervenak et al. that evaluated pregnancies conceived by IVF and thus had known conception dates, HC was found to be the best predictor of gestational age compared with other commonly used parameters (Table 10.1).48 This finding is in agreement with that of Hadlock,10 Ott11 and Benson49 who compared the performance of HC, BPD, FL and AC in different populations.

The HC should be measured in a plane that is perpendicular to the parietal bones and traverses the third ventricle and thalami (Fig. 10.3). Three adequate CRL measurements should be taken and the average used for gestational age determination.31 The accuracy of the CRL measurement has been well documented in the medical literature. Specifically, gestational age can be estimated safely with a maximal error of 3–5 days in the first trimester.6,16,32,33

In summary, first trimester ultrasound is a useful and reliable tool in the assessment of gestational age. In particular, sonographic measurement of the CRL during the first trimester is the best parameter for estimating gestational age and is accurate within five days of the actual conception date.30,32
parameters, it is important to take the images in the proper plane and place the calipers appropriately. For example, when assessing FL, the long axis of the femur should be aligned with the transducer measuring only the osseous portions of the diaphysis and metaphysis of the proximal femur. While not included in the FL measurement, the proximal epiphyseal cartilage (future greater trochanter) and the distal femoral epiphyseal cartilage (future distal femoral condyle) should be visualized to assure that the entire osseous femur can be measured without foreshortening or elongation (Fig. 10.5).31,51 Similarly, the AC must be measured appropriately in order to obtain an accurate estimate. The image should be taken in a plane slightly superior to the umbilicus at the greatest transverse abdominal diameter, with the liver, stomach, spleen and junction of the right and left portal veins visualized (Fig. 10.6).31

Table 10.1: Comparison of stepwise multiple linear regression in estimation of fetal age for singletons using different second trimester biometric parameters by Chervenak et al.47

<table>
<thead>
<tr>
<th>Biometric parameters</th>
<th>Random error (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>3.77</td>
</tr>
<tr>
<td>AC</td>
<td>3.96</td>
</tr>
<tr>
<td>BPD</td>
<td>4.26</td>
</tr>
<tr>
<td>FL</td>
<td>4.35</td>
</tr>
<tr>
<td>HC+AC</td>
<td>3.44</td>
</tr>
<tr>
<td>HC+FL</td>
<td>3.55</td>
</tr>
<tr>
<td>HC+AC+FL</td>
<td>3.35</td>
</tr>
</tbody>
</table>

The fetal head without including the scalp. The BPD can be taken in the same plane by placing the calipers on the outer edge of the proximal calvarium wall and on the inner edge of the distal calvarium wall.50 The BPD, while highly correlated with HC, is less accurate as a predictor of gestational age as a result of variation in head shape.48

Multiple parameters have been shown to improve the accuracy of gestational age assessment.48 Along with HC, the addition of one parameter (AC or FL) or two parameters (AC and FL) is slightly superior to HC alone in the prediction of fetal age. Table 10.1 demonstrates the relative error associated with the use of different biometric parameters. The use of multiple parameters also reduces the effect of outliers caused by biologic phenomena (i.e. congenital anomalies or growth variation) or technical error in measurement of a single structure. Still, with multiple parameters, it is important to take the images in the proper plane and place the calipers appropriately. For example, when assessing FL, the long axis of the femur should be aligned with the transducer measuring only the osseous portions of the diaphysis and metaphysis of the proximal femur. While not included in the FL measurement, the proximal epiphyseal cartilage (future greater trochanter) and the distal femoral epiphyseal cartilage (future distal femoral condyle) should be visualized to assure that the entire osseous femur can be measured without foreshortening or elongation (Fig. 10.5).31,51 Similarly, the AC must be measured appropriately in order to obtain an accurate estimate. The image should be taken in a plane slightly superior to the umbilicus at the greatest transverse abdominal diameter, with the liver, stomach, spleen and junction of the right and left portal veins visualized (Fig. 10.6).31
Most modern ultrasound machines are equipped with computer software that will automatically calculate the estimated gestational age based on the entered measurements. Using a large singleton IVF population from 14–22 weeks, Chervenak et al. derived an optimal gestational age prediction formula using stepwise linear regression with a standard deviation (SD) of 3.5 days between the predicted and true gestational age. This formula was compared to 38 previously published equations. Nearly all equations produced a prediction within one week demonstrating that fetal biometry in the midtrimester for assessment of gestational age is applicable and accurate across populations and institutions. Clinically, when a discrepancy greater than seven days (2SD) exists between the menstrual and ultrasound dating in the second trimester, the biometric prediction should be given preference.

Recently, we published a study evaluating and comparing the accuracy of first- and second-trimester ultrasound assessment of gestational age using pregnancies conceived with IVF. Our data showed that first- and second-trimester estimates of gestational age had small differences in the systematic and random error components for an estimated gestational age that was based on fetal CRL or biometry. On the basis of this data derived from pregnancies with known conception dates, ultrasound scanning can determine fetal age to within less than five days in the first trimester and less than seven days in the second trimester in more than 95% of cases. This data further confirms the findings of Wisser et al. and Chervenak et al. regarding the precision of ultrasound scans to assess gestational age in the first and second trimester, respectively.

Third Trimester Ultrasound

While ultrasound has proven to be useful in the assessment of gestational age in the first and second trimesters, accuracy in the third trimester is not as reliable. Biologic variation can be a major factor that affects accuracy in gestational age prediction, and this variability greatly increases with advancing pregnancy. Doubilet and Benson evaluated late third-trimester ultrasound examinations of women who had also received a first-trimester examination and found the disparity in gestational age assessments to be 3 weeks or greater. Thus, third-trimester sonographic estimates of gestational age should be used with caution, if at all.

MULTIFETAL PREGNANCIES

Dating equations generated for singletons can be applied to twins and triplets in order to accurately predict fetal age. Chervenak et al. used multiple linear regression to determine an optimal dating formula for multiple gestations. In twin pregnancies, a single averaged prediction of the gestational age of each fetus is appropriate and was found to yield the most accurate results. This approach of averaging the two fetal age estimates is reasonable as the combined biologic and measurement variability among twins is larger than the decrease in average size of twins relative to singletons. In contrast, using the maximum or minimum estimate in a twin set yielded a slightly larger systematic error than an averaged prediction (Table 10.2). In the case of triplets, one day can be added to the average of the largest and shortest gestational age prediction among these fetuses for the most accurate gestational age assessment.

Slightly larger deviations in the predictions are not unexpected for individual twins or triplets as the formulae have been derived from a singleton population. However, this imprecision is partially compensated for by the fact that multiple pregnancy predictions are based on more information, namely two or three times as many measurements as for singletons. As singleton and multiple gestations grow at similar rates during the second trimester, the difference in the uncertainty of the prediction for gestational age is small using a singleton gestation formula. Indeed, using IVF pregnancies with known conception dates, we have published data confirming that gestational age predictions for twin and triplet gestations have similar accuracy as singleton gestations (Table 10.3).

Table 10.2: Application of a singleton multiple linear regression formula for estimation of fetal age to multiple gestations by Chervenak et al.

<table>
<thead>
<tr>
<th>Pregnancy type</th>
<th>Prediction type</th>
<th>Mean error (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twins</td>
<td>GA of larger twin</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>GA of smaller twin</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Mean GA of both fetuses</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>GA of larger twin</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>GA of smaller twin</td>
<td></td>
</tr>
<tr>
<td>Triplets</td>
<td>GA of largest triplet</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>GA of smallest triplet</td>
<td>-3.4</td>
</tr>
<tr>
<td></td>
<td>Mean GA of all fetuses</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>GA of largest triplet</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>GA of smallest triplet</td>
<td></td>
</tr>
</tbody>
</table>

CHOOSING A DUE DATE

When the date of conception is unequivocal, as in cases of IVF, the estimated date of confinement should not be changed based on ultrasound. However, more often than not, this is not the case. In the first trimester, an estimated date of confinement (EDC) based on the LMP that is greater than five days different from the CRL measurement should be changed to the sonographic derived EDC (Flowchart. 10.1). In the second trimester, a combination of biometric parameters that includes the HC should be used to predict the EDC. In the face of a discrepancy of more than seven days in the second trimester, the sonographic biometric prediction should be given preference, provided there is no anomaly or severe growth delay (Flowchart. 10.2). In fact, some authors argue that biometric prediction in the first and second trimesters should be given preference in every case.

One of the most common and serious mistakes made when determining gestational age is changing the due date based on a second or subsequent ultrasound examination. The inaccuracy of ultrasound dating increases with gestational age. If the LMP and clinical findings suggest a gestational age within 5 days of a first trimester scan or within 7 days of a second trimester scan, no further investigation is necessary. If the initial first or second trimester sonographically determined gestational age is outside these ranges, the due date should be changed. However, as the pregnancy progresses, revision of a due date that was based on a previous ultrasound is never warranted. If there is a discrepancy between the gestational age assessments of two ultrasound examinations, considering explanations such as intrauterine growth restriction (IUGR), macrosomia or other pathological conditions may be appropriate.

Table 10.3: Discrepancies between ultrasound estimates and true gestational age for the first and second trimester in singleton, twin, and triplet pregnancies

<table>
<thead>
<tr>
<th></th>
<th>Systematic Errora</th>
<th>Random Errorb</th>
<th>Absolute Errorc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Trimester</td>
<td>Second Trimester</td>
<td>First Trimester</td>
</tr>
<tr>
<td>Singleton</td>
<td>+1.3 ± 0.2 days</td>
<td>-0.1 ± 0.4 days</td>
<td>2.4 days</td>
</tr>
<tr>
<td>Twin</td>
<td>+1.4 ± 0.2 days</td>
<td>-0.6 ± 0.3 days</td>
<td>1.7 days</td>
</tr>
<tr>
<td>Triplet</td>
<td>+0.8 ± 0.4 days</td>
<td>-0.6 ± 0.5 days</td>
<td>2.1 days</td>
</tr>
</tbody>
</table>

Systematic error, average difference between estimated and true gestational age; Random error, residual standard deviation between estimated and true gestational age; Absolute error, average absolute value of the discrepancy between estimated and true gestational age

*a mean ± standard error of the mean
*b standard deviation
*c for gestations with both assessments

FLowchart 10.1 Gestational age assessment using first trimester ultrasound

1. First trimester ultrasound
2. ≤5 days discrepancy between LMP and US estimate of GA
 - Choose LMP derived GA prediction
3. >5 days discrepancy between LMP and US estimate of GA
 - Choose US derived GA prediction

(Abbreviations: LMP, last menstrual period; US, ultrasound; GA, gestational age)

Flowchart 10.2 Gestational age assessment using second trimester ultrasound

1. Second trimester ultrasound
2. ≤7 days discrepancy between LMP and US estimate of GA
 - Choose LMP derived GA prediction
3. >7 days discrepancy between LMP and US estimate of GA
 - Choose US derived GA prediction

(Abbreviations: LMP, last menstrual period; US, ultrasound; GA, gestational age)

ULTRASOUND PITFALLS

Recent advances in ultrasound image quality and the wide availability of accurate biometric formulas have greatly improved physicians’ ability to calculate gestational age. However, properly dating a pregnancy sonographically still depends on adherence to good ultrasound technique. Obtaining a clear and precise image of each biometric indicator is essential. Errors in estimation may arise from technical difficulties including obtaining the proper axis for measurement, movement of the mother or fetus, machine
sensitivity settings or caliper placement. If a certain biometric indicator is not well visualized or is difficult to measure, it is better to use an alternative indicator rather than include a suboptimal measurement. In addition, it is helpful to obtain several measurements of each indicator and use an average to ensure a more precise calculation of fetal age.

CONCLUSION

Knowledge of gestational age is of great importance in obstetric practice. Optimal assessment requires good judgment by the obstetrician caring for the patient. Since clinical data such as the menstrual cycle or uterine size are often not reliable, the most precise parameter for pregnancy dating should be determined by the obstetrician early in the pregnancy. Ultrasound is an accurate and useful modality for the assessment of gestational age in the first and second trimester of pregnancy and, as a routine part of prenatal care, can greatly impact obstetric management and improve antepartum care.

REFERENCES

