Practical Cardiac Electrophysiology
Practical Cardiac Electrophysiology

Editors

Kartikeya Bhargava
MD DNB FACC FISHNE FHRS
Senior Consultant Cardiology
Division of Cardiac Electrophysiology and Pacing
Medanta Heart Institute
Medanta-The Medicity
Gurgaon, Delhi-NCR, Haryana, India

Samuel J Asirvatham
MD FACC FHRS
Consultant, Division of Cardiovascular Diseases and Internal Medicine
Division of Pediatric Cardiology and Department of Physiology and Biomedical Engineering
Professor of Medicine and Pediatrics
Mayo Clinic College of Medicine
Program Director, EP Fellowship Program
Mayo Clinic, Rochester, MN, USA

Forewords

George Klein
Eric N Prystowsky

The Health Sciences Publisher
New Delhi | London | Philadelphia | Panama
Dedicated to

My mother, Dr Satya Bhargava, a classical singer and an author in the field of music, a true example of dedication and determination, for being a constant source of inspiration; my wife, Rekha Bhargava, for her patience and unconditional support and my lovely daughters, Devpriya and Shivpriya, for allowing me to devote time that should have been rightfully theirs.

—Kartikeya Bhargava

My mother-in-law, Kamala Aravamudan (née Ramanujam), a wonderful person whose nature is to be kind and pleasant yet has the strength and persistence to say and do what may be difficult but needed for the betterment of those around her.

—Samuel J Asirvatham
SP Abhilash MD DNB DM
Assistant Professor
Department of Cardiology
Sree Chitra Tirunal Institute for Medical Sciences and Technology
Thiruvananthapuram, Kerala, India

Arnon Adler MD
Department of Cardiology
Tel Aviv Sourasky Medical Center and Sackler School of Medicine
Tel Aviv University
Tel Aviv, Israel

Masood Akhtar MD FACC FACP FAHA MACP FHRS
Clinical Adjunct Professor of Medicine
University of Wisconsin School of Medicine and Public Health
Director, Electrophysiology Research and Cardiovascular Continuing Medical Education Program
Aurora Cardiovascular Services
Milwaukee, WI, USA

Noora Al-Jefairi MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Sana Amraoui MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Charles Antzelevitch PhD FACC FHRS FAHA
Professor and Executive Director
Cardiovascular Research Program
Lankenau Institute for Medical Research
Wynnewood, PA, USA

Rishi Arora MD
Associate Professor
Department of Medicine
Director, Experimental Cardiac Electrophysiology
Northwestern University Feinberg School of Medicine
Chicago, IL, USA

Samuel J Asivatham MD FACC FHRS
Consultant, Division of Cardiovascular Diseases and Internal Medicine
Division of Pediatric Cardiology and Department of Physiology and Biomedical Engineering
Professor of Medicine and Pediatrics
Mayo Clinic College of Medicine
Program Director, EP Fellowship Program
Rochester, MN, USA

Moustapha Atoui MD
Department of Cardiology
University of Kansas Medical Center
Kansas City, KS, USA

Nitish Badhwar MD
Professor, Department of Medicine
Section of Cardiac Electrophysiology
Division of Cardiology
University of California
San Francisco, CA, USA

Benjamin Berte MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Kartikeya Bhargava MD DNB FACC FISHNE FHRS
Senior Consultant Cardiology
Division of Cardiac Electrophysiology and Pacing
Medanta Heart Institute
Medanta-The Medicity
Gurgaon, Delhi-NCR, Haryana, India

Zalmen Blanck MD FHRS
Staff Electrophysiologist
South Texas Medical Center
Cardiology Clinic of San Antonio
San Antonio, TX, USA

Shomu Bohora MD DM
Associate Professor, Cardiology
UN Mebra Institute of Cardiology and Research Center
Ahmedabad, Gujarat
Consultant Electrophysiologist and Device Specialist
Vadodara, Gujarat, India

Noel G Boyle MD PhD
Professor of Medicine
UCLA Cardiac Arrhythmia Center
UCLA Health System
University of California
Los Angeles, CA, USA

José Angel Cabrera MD PhD
Professor of Cardiology and Chairman
Department of Cardiology
Hospital Quiron-Madrid
European University of Madrid
Madrid, Spain

Ivan Cakulev MD
Assistant Professor
Department of Medicine
Case Western Reserve University
University Hospitals Case Medical Center
Cleveland, OH, USA

Hugh Calkins MD
Nicholas J Fortuin MD Professor of Cardiology
Director, Cardiac Arrhythmia Services
Electrophysiology Laboratory and John Hopkins ARVD/C Program
Division of Cardiology
John Hopkins University
Baltimore, MD, USA

David Callans MD
Professor
Department of Medicine
University of Pennsylvania
Philadelphia, PA, USA
Bryan Cannon MD
Associate Professor
Department of Pediatrics
Mayo Clinic
Rochester, MN, USA

Riccardo Cappato MD FHIRS
Chief
Arrhythmia and Electrophysiology Research Center
Humanitas Clinical and Research Center
Rozzano (Milan), Italy

Sergio Castrejón MD
Department of Cardiology
Hospital Quirón-Madrid
European University of Madrid
Madrid, Spain

Peter Cheung MD FACC FHIRS
Assistant Professor of Medicine
Texas A & M University Health Science Center
Section of Cardiac Electrophysiology and Pacing
Division of Cardiology
Baylor Scott and White Health
Temple, TX, USA

Tahmeed Contractor MD
Assistant Professor of Medicine
Clinical Cardiac Electrophysiology
Division of Cardiology
Loma Linda University Medical Center
Loma Linda, CA, USA

Ralph J Damiano Jr MD
Evarts A Graham Professor of Surgery
Chief, Division of Cardiothoracic Surgery
Co-Chairman, Heart and Vascular Center
Washington University School of Medicine
St. Louis, MO, USA

Mithilesh K Das MD MRCP FACP
Professor of Medicine
Kranert Institute of Cardiology
Indiana University School of Medicine
Indiana University Health
Indianapolis, IN, USA

Freddy Del-Carpio Munoz MD Msc FACC FHIRS
Consultant
Division of Cardiovascular Diseases
Assistant Professor of Medicine
Mayo Clinic College of Medicine
Mayo Clinic, Rochester, MN, USA

Arnaud Denis MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Nicolas Derval MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Abhishek Deshmukh MD
Division of Cardiology
Mayo Clinic
Rochester, MN, USA

Anwer Dhaala MD FACC FHIRS
Clinical Adjunct Associate Professor of Medicine
Cardiovascular Disease Section
Department of Medicine
University of Wisconsin School of Medicine and Public Health
Aurora Cardiovascular Services
Aurora Sinai Medical Center
Milwaukee, WI, USA

Sanjay Dixit MD
Associate Professor of Medicine
University of Pennsylvania School of Medicine
Director, Cardiac Electrophysiology
Philadelphia VA Medical Center
Philadelphia, PA, USA

Katherine Duello MD
Division of Cardiovascular Diseases
Mayo Clinic
Jacksonville, FL, USA

Paul Friedman MD FHIRS
Professor of Medicine
Vice-Chair, Cardiovascular Medicine
Vice-Chair for Academic Affairs and Faculty Development
Medical Director, Remote Monitoring Division of Cardiology
Mayo Clinic
Rochester, MN, USA

Antonio Frontera MD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Edward P Gerstenfeld MD
Chief, Section of Cardiac Electrophysiology
Melvin Scheinman Professor of Medicine
University of California
San Francisco, CA, USA

Sampath Gunda MD MHA
Assistant Professor of Medicine
Cardiology Hospitalist
Virginia Commonwealth University
Richmond, VA, USA

Michel Haissaguerre MD
Chief, Department of Cardiac Electrophysiology
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France

Haris M Haqqani MBBS(Hons) PhD
Senior Lecturer and Electrophysiologist
School of Medicine
University of Queensland
Department of Cardiology
The Prince Charles Hospital
Brisbane, Queensland, Australia

Matthew C Henn MD MS
Division of Cardiothoracic Surgery
Washington University School of Medicine
St. Louis, MO, USA

Mélèze Hocini MD PhD
Professor
LIRYC Institute, Hospital du Haut-Lévêque et University de Bordeaux
Pessac, France

Darren Hooks MD MBChB FRACP
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team
Pessac, France
Shoei K Stephen Huang
MD FACC FAHA FHRS
Chair Professor of Medicine
Tzu Chi University School of Medicine
Hualien, Taiwan
Former Professor of Medicine with Tenure
Texas A&M University School of Medicine
Temple, TX, USA

Rahul Jain
MD MPH FHRS
Assistant Professor
Indiana University School of Medicine
Department of Medicine
Krannert Institute of Cardiology
Indianapolis, IN, USA

Pierre Jais
MD
CHU Bordeaux
Université de Bordeaux
LIRYC, Bordeaux, France

Aravdeep S Jhand
MD
Sparrow Thoracic and Cardiovascular Institute, Michigan State University
Lansing, MI, USA

Mark E Josephson
MD
Chief, Division of Cardiovascular Medicine
Beth Israel Deaconess Medical Center
Herman Dana Professor of Medicine
Harvard Medical School
Director, Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service
Boston, MA, USA

Jonathan M Kalman
MBBS PhD
Department of Cardiology and Medicine
The Royal Melbourne Hospital
University of Melbourne
Parkville, Victoria, Australia

Vikas Kalra
MBBS
Indiana University School of Medicine
Krannert Institute of Cardiology
Indianapolis, IN, USA

Demosthenes G Katritsis
MD PhD FRCP
Director, Department of Cardiology
Athens Eurolinic
Athens, Greece
Lecturer, Department of Medicine
Division of Cardiology
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Bradley P Knight
MD FACC FHRS
Director, Cardiac Electrophysiology
Bluhm Cardiovascular Institute of Northwestern University, Chicago
Professor, Department of Medicine
Feinberg School of Medicine
Northwestern University
Chicago, IL, USA

Karl-Heinz Kuck
PhD MD
Professor and Head
Department of Cardiology
Asklepios Klinik St. Georg
Hamburg, Germany

Dhanunjaya Lakireddy
MD FACC FHRS
Professor of Medicine
Director, Center for Excellence in AF and Complex Arrhythmias
University of Kansas Medical Center
Kansas City, KS, USA

Dennis H Lau
MBBS PhD
Robert J Craig Lecturer
Centre for Heart Rhythm Disorders (CHRD)
South Australian Health and Medical Research Institute (SAHMRI)
University of Adelaide and
Royal Adelaide Hospital
Adelaide, Australia

Adam Lee
MBBS BSc(Hons) Mmed
Department of Cardiology
The Prince Charles Hospital
Brisbane, Queensland, Australia

Jianqing Li
MD
Division of Cardiology
Winthrop University Hospital
Mineola, NY, USA

Jackson J Liang
DO
University of Pennsylvania
Philadelphia, PA, USA

Watchara Lohawijarn
MD
Sparrow Thoracic and Cardiovascular Institute
Michigan State University
Lansing, MI, USA

Gerard Loughlin
MD
Department of Cardiology
Hospital General Universitario
Gregorio Marañón
Madrid, Spain

Rajiv Mahajan
MD PhD
NHMRC Early Career Fellow and
Leo J Mahar Lecturer
Center for Heart Rhythm Disorders (CHRD)
South Australian Health and Medical Research Institute (SAHMRI)
University of Adelaide and
Royal Adelaide Hospital
Adelaide, Australia

Tilman Maurer
MD
Department of Cardiology
Asklepios Klinik St. Georg
Hamburg, Germany

John M Miller
MD
Professor of Medicine
Director, Clinical Cardiac Electrophysiology
Indiana University School of Medicine
Department of Medicine
Krannert Institute of Cardiology
Indianapolis, IN, USA

Jeffrey Munro
DO
Mayo Clinic
Phoenix, AZ, USA

Chirshan J Nalliah
BSc MBBS
Department of Cardiology and Medicine
The Royal Melbourne Hospital
University of Melbourne
Parkville, Victoria, Australia

Narayanan Nambodiri
MD DM DNB PDF (SCT) FIC(RAH)
Additional Professor
Department of Cardiology
Sree Chitra Institute for Medical Sciences and Technology
Thiruvananthapuram, Kerala, India

Calambur Narasimhan
MD DM
Director, Arrhythmia and Electrophysiology Services
CARE Hospital
Hyderabad, Telangana, India

Venkata A Narla
MD MAS
Section of Cardiac Electrophysiology
Division of Cardiology
Department of Medicine
University of California
San Francisco, CA, USA

Akihiko Nogami
MD PhD
Professor of Cardiology
Faculty of Medicine
University of Tsukuba
Tsukuba, Japan
Practical Cardiac Electrophysiology

Peter A Noseworthy MD
Assistant Professor of Medicine
Mayo Clinic
Rochester, MN, USA

Karen Ordoval MD MAS
Associate Professor of Radiology
Director of Cardiac Imaging
Department of Medicine and Radiology
University of California
San Francisco, CA, USA

Benny J Padanilam MD
Director, Electrophysiology Labs
St. Vincent Medical Group
St. Vincent Hospital
Indianapolis, IN, USA

Thomas Pambrun MD
Hôpital Cardiologique du Haut-Lévêque and the Université de Bordeaux
Bordeaux, France

Bence Patocsai MD
Clinician/Postdoc Research Fellow
University Medical Center Mannheim
University of Heidelberg
Mannheim, Germany

Daniel Pelchovitz MD FACC
Attending Electrophysiologist
The Christ Hospital
Cincinnati, OH, USA

B Hygriv Rao MD DM FACC FISE
Senior Consultant Cardiologist
Director, Division of Pacing and Electrophysiology
Krishna Institute of Medical Sciences (KIMS) Hospitals
Hyderabad, Telangana, India

Raphael Rosso MD
Department of Cardiology
Tel Aviv Sourasky Medical Center and Sackler School of Medicine
Tel Aviv University
Tel Aviv, Israel

Chawannuch Ruangsri MD
Visiting Researcher
Division of Cardiopulmonary Surgery
Washington University School of Medicine
St. Louis, MO, USA

Frédéric Sacher MD PhD
IHU LIRYC, Electrophysiology and Heart Modeling Institute
Bordeaux University
Bordeaux University Hospital (CHU)
Pessac, France

Daljeet Kaur Saggu MD DM
Consultant Cardiologist and Electrophysiologist
CARE Hospital
Hyderabad, Telangana, India

Negar Salehi MD
Sparrow Thoracic and Cardiovascular Institute
Michigan State University
Lansing, MI, USA

Damián Sánchez-Quintana MD PhD
Professor of Human Anatomy
Department of Anatomy and Cell Biology
University of Extremadura
Badajoz, Spain

Prashanthan Sanders MBBS PhD
Knappman Professor of Cardiology Research
Center for Heart Rhythm Disorders (CHRD)
South Australian Health and Medical Research Institute (SAHMRI)
University of Adelaide and Royal Adelaide Hospital
Adelaide, Australia

Melvin Scheinman MD
Professor
Department of Medicine
University of California
San Francisco, CA, USA

Matthew R Schill MD
Resident Physician
Department of Surgery
Washington University School of Medicine
St. Louis, MO, USA

John William Schleifer MD
Division of Cardiovascular Diseases
Mayo Clinic
Rochester, MN, USA

Richard B Schuessler PhD
Professor of Surgery
Division of Cardiothoracic Surgery
Washington University School of Medicine
St. Louis, MO, USA

Raja J Selvaraj MD DNB
Associate Professor
Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)
Puducherry, India

Ashok Shah MBBS MD DM CCDS
Consultant Cardiologist
Peel Health Campus
Mandurah, WA, Australia

George Shaw MD
University of Pennsylvania
Philadelphia, PA, USA

Win-Kuang Shen MD
Professor of Medicine
Mayo Clinic College of Medicine
Chair, Department of Cardiovascular Diseases
Mayo Clinic
Phoenix, AZ, USA

Kalyanam Shivkumar MD PhD
Professor of Medicine and Radiology
Director, UCLA Cardiac Arrhythmia Center and EP Programs
UCLA Health System
University of California
Los Angeles, CA, USA

Vini Singh MD
Sparrow Thoracic and Cardiovascular Institute
Michigan State University
Lansing, MI, USA

Dan Sorajja MD
Staff Physician
Cleveland Clinic
Abu Dhabi, United Arab Emirates

Komandoor Srinivasan MD
Director, Cardiac Electrophysiology
Mayo Clinic
Phoenix, AZ, USA

Leonard A Steinberg MD
Pediatric Electrophysiologist
Peyton Manning Children's Hospital
St. Vincent Hospital
Indianapolis, IN, USA

Taresh Taneja MD FACC FHRS
Cardiac Electrophysiology
The Permanente Medical Group
Sacramento, CA, USA
Contributors

Ajit Thachil MD DM CCDS
Cardiac Electrophysiologist
Lisie Hospital
Kochi, Kerala, India

Ranjan K Thakur
MD MPH MBA FRCP FACC FHRS
Cardiac Electrophysiology Laboratory
Sparrow Thoracic and Cardiovascular Institute
Michigan State University
Lansing, MI, USA

Roderick Tung MD
Associate Professor of Medicine
Director of Cardiac Electrophysiology
University of Chicago
Chicago, IL, USA

Darragh Twomey MBBS
Research Associate
Center for Heart Rhythm Disorders (CHRD)
South Australian Health and Medical Research Institute (SAHMRI)
University of Adelaide and Royal Adelaide Hospital
Adelaide, Australia

Amar Upadhyay MD
Senior Resident
Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)
Puducherry, India

KL Venkatachalam MD
Assistant Professor of Medicine
Consultant, Cardiovascular Diseases
Division of Cardiovascular Diseases
Mayo Clinic
Jacksonville, FL, USA

Nishant Verma MD MPH
Assistant Professor of Medicine
Northwestern University
Feinberg School of Medicine
Chicago, IL, USA

Sami Viskin MD
Department of Cardiology
Tel Aviv Sourasky Medical Center and Sackler School of Medicine
Tel Aviv University
Tel Aviv, Israel

Philip Wackel MD
Assistant Professor of Pediatrics
Division of Pediatric Cardiology
Mayo Clinic
Rochester, MN, USA

Albert L Waldo MD PhD Hon
Professor of Medicine
Case Western Reserve University
University Hospitals Case Medical Center
Cleveland, OH, USA

Edward P Walsh MD
Chief, Cardiac Electrophysiology Division
Department of Cardiology
Boston Children's Hospital
Professor of Pediatrics
Harvard Medical School
Boston, MA, USA

Erik Wissner MD FACC FHRS
Senior Consultant Cardiology/Electrophysiology
Director Stereotaxis Laboratory
Asklepios Klinik St. Georg
Hamburg, Germany

Takumi Yamada MD
Associate Professor of Medicine
Division of Cardiovascular Disease
University of Alabama at Birmingham
Birmingham, AL, USA

Seigo Yamashita MD
IHU Liryc, Electrophysiology and Heart Modeling Institute
Foundation Bordeaux Université
Bordeaux University Hospital (CHU)
Cardiac Electrophysiology and Cardiac Stimulation Team, Pessac, France

Yanfei Yang MD
Associate Director
Medical Affairs and Medical Safety
Boston Scientific
San Francisco, CA, USA
Drs Kartikeya Bhargava and Samuel J Asirvatham have carefully selected a well-known group of international experts to contribute to this multi-authored, comprehensive and up-to-date textbook of cardiac electrophysiology. Practical Cardiac Electrophysiology is largely clinically oriented and constitutes 47 chapters covering the spectrum of clinical diagnosis and management of arrhythmias, in and out of the electrophysiology laboratory. There is extensive coverage of all our “tools” including mapping equipment, ablation catheters and lab setup. There is an excellent chapter on practical cardiac anatomy, a must read for the serious student of the electrophysiology.

The book not only covers the most current fashionable entities and procedural skills, but also covers the less glamorous but necessary areas such as sinus node function testing.

This is not a “quick read” but individual chapters can be used as an excellent starting point for studying an area of interest for the electrophysiologist be they novice or more experienced. It would also serve well as a basis for study for board review as there is virtually no area of clinical electrophysiology not covered.

Overall, a useful addition to the shelf of any serious student of electrophysiology.

George Klein
Professor of Medicine
University of Western Ontario
London, Ontario
Canada
I was asked to write a Foreword for *Practical Cardiac Electrophysiology* edited by Drs Kartikeya Bhargava and Samuel J Asirvatham. This book contains 47 chapters authored by experts from around the world and includes topics as basic as how to do an electrophysiology study to complex imaging techniques and approaches to ablation of supraventricular and ventricular arrhythmias. While I admit, I had an opportunity to do a cursory journey through the various chapters in this textbook, my role is not one of a reviewer. Rather, I will address a more fundamental question, why bother to do such a project.

I grew up in an era of medical education where we “cherished” our textbooks. The chapters were read, key sections underlined, often reread, and kept on a shelf for ready reference. It was important to read journals to keep abreast of new observations (actually, not so new by the time the journal arrived). However, during teaching rounds, quotes from Friedberg’s or Hurst’s *Textbook of Cardiology* reigned supreme. The years moved on and a few specialty textbooks in electrophysiology became available, including one from my co-author Dr George Klein and me. Scores of journals entered the cardiovascular space, several specializing in cardiac arrhythmias. But in the distance, a looming shadow appeared that produced a sea change in how we access information: The Internet.

What a marvelous educational tool the Internet is, constantly available at your fingertips and nearly always willing to answer your queries. A search of a topic can not only provide the latest literature on it but also an abundance of non-vetted information of questionable worth — good luck on sorting through it! There are more blogs and commentary sites than “Carter has Little Liver Pills” (you youngsters will need to search the Internet for that reference). Still, it is an incredible fountain of knowledge, the modern-day Pierian Spring.

So, I ask again, why bother assembling more than 2 score chapters from even more authors yielding hundreds of pages of information, even if it can be put into an electronic format? The reason is that reference books such as this are needed and provide a cohesive source of information for a novice or expert in clinical electrophysiology. The chapters and authors have been “vetted” by two accomplished electrophysiologists, Dr Asirvatham, who is one of the world’s leading educators and a past recipient of the Distinguished Teacher award from Heart Rhythm Society (HRS), and Dr Kartikeya Bhargava. Thus, the reader has a single reference source to answer most questions about cardiac arrhythmias. Any such textbook will be somewhat out of date by the nature of how fast our field is moving, but in my experience this accounts, mostly for changes in therapy or sometimes an ablation technique, but not in the core principles of our field. I previously stated that my responsibility is not to review the content of this thorough textbook, but I must admit that I did do more than a “peek” in some of the chapters. I was delighted to see that the authors used “AV node-dependent arrhythmias” in one of their overall sections, a term that we initially used in our textbook in 1994, and I have found this is a useful way to teach concepts of supraventricular arrhythmias.

In summary, my congratulations to the editors for compiling such a complete and excellent resource for clinical electrophysiologists. It is worth having on your electronic bookshelf.

Eric N Prystowsky MD
Director, Cardiac Arrhythmia Service
St. Vincent Hospital, Indianapolis, IN, USA
Consulting Professor of Medicine
Duke University Medical Center
Durham, NC, USA
“Education is not the learning of facts, but the training of the mind to think.”

—Albert Einstein

The complexity of cardiac electrophysiology is simultaneously a source of never-ending challenge and ever-fulfilling satisfaction for practitioners of this art. To attempt good invasive electrophysiology practice without learning the facts and being conversant in the fundamental principles is futile. Yet, the cornerstones themselves are insufficient in guiding a practitioner through the impasse between success and complication. This textbook begins with a recognition that the basics of anatomy, physiology, biophysics, and electrocardiography require mastery before progress can be made. In addition, the focus on practical understanding and training the electrophysiologist’s mind to be able to apply these principles in real-time when confronted by challenging arrhythmias permeates the book.

There already exist outstanding textbooks of electrophysiology which are often comprehensive treatises or collected case studies. The present work, we hope, benefits all practitioners; those in the developing world may stand to benefit the most. The large number of patients, sometimes suboptimal resources, and in certain cases the lack of access to the standard books and journals have been kept in mind by keeping this book practical and easy to use.

We acknowledge the time and effort of an international panel of master electrophysiologists, who have authored the works that reflect their specific areas of expertise.

Extensive illustrations, case-based discussions, and brief summaries provided at the end of most chapters will provide a perspective on the topic covered in the chapter and guide the readers in applying this information in their daily work.

Kartikeya Bhargava
Samuel J Asirvatham
Acknowledgments

We acknowledge with gratitude the untiring meticulous work from Jennifer A Mears, BA and Susan E Bisco, MA, without their assistance and organizational skills, this textbook would not have made it out to be of value for our present generation!

We thank Ms Shivangi Pramanik for all her help in getting this project completed.

We are grateful to Shri Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President), Mr Tarun Duneja (Director-Publishing), Mr Mohit Bhargava (Production Coordinator), Ms Swati Thapar (Development Editor), and the entire team of M/s Jaypee Brothers Medical Publishers (P) Ltd., New Delhi, India, for their help in bringing out the book.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-F-FDG</td>
<td>Flourine-18 Fluorodeoxyglucose</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>AAD</td>
<td>Anti-arrhythmic Drug</td>
</tr>
<tr>
<td>AAV</td>
<td>Adeno-associated Virus</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ACLS</td>
<td>Advanced Cardiac Life Support</td>
</tr>
<tr>
<td>ACTN-2</td>
<td>Alpha Actinin-2</td>
</tr>
<tr>
<td>AEF</td>
<td>Atrooesophageal Fistula</td>
</tr>
<tr>
<td>AEGM</td>
<td>Atrial Electrogram</td>
</tr>
<tr>
<td>AF</td>
<td>Atrial Fibrillation</td>
</tr>
<tr>
<td>AF</td>
<td>Atrial Flutter</td>
</tr>
<tr>
<td>AHP</td>
<td>Atrial Fibrillation Pathway</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AIV</td>
<td>Anterior Interventricular Vein</td>
</tr>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Achievable</td>
</tr>
<tr>
<td>AMC</td>
<td>Aortomitral Continuity</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine Mono Phosphate</td>
</tr>
<tr>
<td>ANS</td>
<td>Autonomic Nervous System</td>
</tr>
<tr>
<td>AP</td>
<td>Accessory Pathway</td>
</tr>
<tr>
<td>APL</td>
<td>Action Potential</td>
</tr>
<tr>
<td>APC</td>
<td>Atrial Premature Contraction</td>
</tr>
<tr>
<td>APD</td>
<td>Atrial Premature Depolarization</td>
</tr>
<tr>
<td>ARI</td>
<td>Activation Recovery Intervals</td>
</tr>
<tr>
<td>ARP</td>
<td>Absolute Refractory Period</td>
</tr>
<tr>
<td>ART</td>
<td>Atrioventricular Tachycardia</td>
</tr>
<tr>
<td>ARVC</td>
<td>Arrhythmogenic Right Ventricular Cardiomyopathy</td>
</tr>
<tr>
<td>ARVD/C</td>
<td>Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy</td>
</tr>
<tr>
<td>ASC</td>
<td>Aortic Sinus Cusp</td>
</tr>
<tr>
<td>AT</td>
<td>Atrial Tachycardia</td>
</tr>
<tr>
<td>ATP</td>
<td>Antitachycardia Pacing</td>
</tr>
<tr>
<td>ATT</td>
<td>Antitubercular Treatment</td>
</tr>
<tr>
<td>AV</td>
<td>Atrioventricular</td>
</tr>
<tr>
<td>AVN</td>
<td>Atrioventricular Node</td>
</tr>
<tr>
<td>AVNERP</td>
<td>Atrioventricular Nodal Effective Refractory Period</td>
</tr>
<tr>
<td>AVNRT</td>
<td>Atrioventricular Nodal Reentrant Tachycardia</td>
</tr>
<tr>
<td>AVRT</td>
<td>Atrioventricular Reciprocating or Reentrant Tachycardia</td>
</tr>
<tr>
<td>AWP</td>
<td>Alternating Wenkebach Periods</td>
</tr>
<tr>
<td>BB</td>
<td>Bundle Branch</td>
</tr>
<tr>
<td>BBB</td>
<td>Bundle Branch Block</td>
</tr>
<tr>
<td>BBR</td>
<td>Bundle Branch Reentry</td>
</tr>
<tr>
<td>BBRVT</td>
<td>Bundle Branch Reentrant Ventricular Tachycardia</td>
</tr>
<tr>
<td>BLS</td>
<td>Basic Life Support</td>
</tr>
<tr>
<td>BrS</td>
<td>Brugada Syndrome</td>
</tr>
<tr>
<td>BT</td>
<td>Bypass Tract</td>
</tr>
<tr>
<td>CA</td>
<td>Cardiac Arrest</td>
</tr>
<tr>
<td>CICR</td>
<td>Calcium induced Calcium Release</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic Adenosine Monophosphate</td>
</tr>
<tr>
<td>CASPER</td>
<td>Cardiac Arrest Survivors with Preserved Ejection Fraction Registry</td>
</tr>
<tr>
<td>CCAVB</td>
<td>Congenital Complete Atrioventricular Block</td>
</tr>
<tr>
<td>CCB</td>
<td>Calcium Channel Blocker</td>
</tr>
<tr>
<td>CCW</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>CF</td>
<td>Contact Force</td>
</tr>
<tr>
<td>CFAE</td>
<td>Complex Fractionated Atrial Electrograms</td>
</tr>
<tr>
<td>CFB</td>
<td>Central Fibrous Body</td>
</tr>
<tr>
<td>CHD</td>
<td>Congenital Heart Disease</td>
</tr>
<tr>
<td>CHF</td>
<td>Congestive Heart Failure</td>
</tr>
<tr>
<td>CL</td>
<td>Cycle Length</td>
</tr>
<tr>
<td>CMIIV</td>
<td>Cox-Maze IV Procedure</td>
</tr>
<tr>
<td>CMP</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>CMP</td>
<td>Cox-Maze Procedure</td>
</tr>
<tr>
<td>CMR</td>
<td>Cardiac Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
</tr>
<tr>
<td>CPVT</td>
<td>Catecholaminergic Polymorphic Ventricular Tachycardia</td>
</tr>
<tr>
<td>CRD</td>
<td>Cournard</td>
</tr>
<tr>
<td>CRT</td>
<td>Cardiac Resynchronization Therapy</td>
</tr>
<tr>
<td>CS</td>
<td>Coronary Sinus</td>
</tr>
<tr>
<td>CT</td>
<td>Crista Terminalis</td>
</tr>
<tr>
<td>CTB</td>
<td>Cardiac Tuberculosis</td>
</tr>
<tr>
<td>CTCA</td>
<td>Computed Tomography Coronary Angiogram</td>
</tr>
<tr>
<td>CTI</td>
<td>Cavo-Tricuspid Isthmus</td>
</tr>
<tr>
<td>CW</td>
<td>Clockwise</td>
</tr>
<tr>
<td>DAD</td>
<td>Delayed Afterdepolarization</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCM</td>
<td>Dilated Cardiomyopathy</td>
</tr>
<tr>
<td>DE</td>
<td>Delayed Enhancement</td>
</tr>
<tr>
<td>DPP-6</td>
<td>Dipeptidyl aminopeptidase-like protein-6</td>
</tr>
<tr>
<td>DS</td>
<td>Desmosomal</td>
</tr>
<tr>
<td>DSC</td>
<td>Desmocollin</td>
</tr>
<tr>
<td>DSG</td>
<td>Desmoglein</td>
</tr>
<tr>
<td>DSP</td>
<td>Desmoplakin</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>DWR</td>
<td>Double Wave Reentry</td>
</tr>
<tr>
<td>EAD</td>
<td>Early Afterdepolarization</td>
</tr>
<tr>
<td>EAM</td>
<td>Electro-anatomical Map/mapping</td>
</tr>
<tr>
<td>EAT</td>
<td>Ectopic Atrial Tachycardia</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ECGI</td>
<td>Electrocardiographic Imaging</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extra Corporeal Membrane Oxygenation</td>
</tr>
<tr>
<td>EGM</td>
<td>Electrogram</td>
</tr>
<tr>
<td>E-1DC</td>
<td>Electromyocardial Biopsy</td>
</tr>
<tr>
<td>EP</td>
<td>Electrophysiology</td>
</tr>
<tr>
<td>EPS</td>
<td>Electrophysiology Study</td>
</tr>
<tr>
<td>ER</td>
<td>Early Repolarization</td>
</tr>
<tr>
<td>ERP</td>
<td>Early Repolarization Pattern</td>
</tr>
<tr>
<td>ERS</td>
<td>Early Repolarization Syndrome</td>
</tr>
<tr>
<td>ES</td>
<td>Electrical Storm</td>
</tr>
<tr>
<td>EUS</td>
<td>Electrically Unexcitable Scar</td>
</tr>
<tr>
<td>FDG</td>
<td>Fluorodeoxyglucose</td>
</tr>
<tr>
<td>FO</td>
<td>Fossa Ovalis</td>
</tr>
<tr>
<td>FP</td>
<td>Fast Pathway</td>
</tr>
<tr>
<td>fQRS</td>
<td>Fragmented QRS</td>
</tr>
<tr>
<td>FRP</td>
<td>Functional Refractory Period</td>
</tr>
<tr>
<td>GA</td>
<td>General Anesthesia</td>
</tr>
<tr>
<td>GCV</td>
<td>Great Cardiac Vein</td>
</tr>
<tr>
<td>Gd</td>
<td>Gadolinium</td>
</tr>
<tr>
<td>GM</td>
<td>Granulomatous Myocarditis</td>
</tr>
<tr>
<td>GP</td>
<td>Ganglionated Plexus/Plexi</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome Wide Association Studies</td>
</tr>
<tr>
<td>HA</td>
<td>His Bundle-Atrial</td>
</tr>
<tr>
<td>HB</td>
<td>His Bundle</td>
</tr>
<tr>
<td>HCM</td>
<td>Hypertrophic Cardiomyopathy</td>
</tr>
<tr>
<td>HI-FU</td>
<td>High Intensity Focused Ultrasound</td>
</tr>
<tr>
<td>HOP</td>
<td>His Overdrive Pacing</td>
</tr>
<tr>
<td>HP</td>
<td>His-Purkinje</td>
</tr>
<tr>
<td>HPE</td>
<td>Histopathological Examination</td>
</tr>
<tr>
<td>HPF</td>
<td>High Pass Filter</td>
</tr>
<tr>
<td>HPS</td>
<td>His-Purkinje System</td>
</tr>
<tr>
<td>HRA</td>
<td>High Right Atrium</td>
</tr>
<tr>
<td>IABP</td>
<td>Intra-aortic Balloon Pump</td>
</tr>
<tr>
<td>IART</td>
<td>Intra-atrial Reentrant Tachycardia</td>
</tr>
<tr>
<td>IAS</td>
<td>Interatrial Septum</td>
</tr>
<tr>
<td>ICD</td>
<td>Implantable Cardiac Defibrillator</td>
</tr>
<tr>
<td>ICE</td>
<td>Intracardiac Echocardiography</td>
</tr>
<tr>
<td>IF-VT</td>
<td>Interfascicular Ventricular Tachycardia</td>
</tr>
<tr>
<td>IHR</td>
<td>Intrinsic Heart Rate</td>
</tr>
<tr>
<td>IIR</td>
<td>Intra-isthmus Reentry</td>
</tr>
<tr>
<td>IP</td>
<td>Isolated Potential</td>
</tr>
<tr>
<td>iPSC-CM</td>
<td>Induced Pluripotent Stem Cell-derived Cardiac Myocytes</td>
</tr>
<tr>
<td>IST</td>
<td>Inappropriate sinus tachycardia</td>
</tr>
<tr>
<td>IVC</td>
<td>Inferior vena cava</td>
</tr>
<tr>
<td>IVCD</td>
<td>Intraventricular Conduction Defect</td>
</tr>
<tr>
<td>JET</td>
<td>Junctional Ectopic Tachycardia</td>
</tr>
<tr>
<td>JPB</td>
<td>Junctional Premature Beat</td>
</tr>
<tr>
<td>JSN</td>
<td>Josephson</td>
</tr>
<tr>
<td>JT</td>
<td>Junctional Tachycardia</td>
</tr>
<tr>
<td>JUP</td>
<td>Plakoglobin</td>
</tr>
<tr>
<td>LA</td>
<td>Left Atrium/Atrial</td>
</tr>
<tr>
<td>LAA</td>
<td>Left Atrial Appendage</td>
</tr>
<tr>
<td>LAD</td>
<td>Left Anterior Descending</td>
</tr>
<tr>
<td>LAFB</td>
<td>Left Anterior Fascicular Block</td>
</tr>
<tr>
<td>LAO</td>
<td>Left Anterior Oblique</td>
</tr>
<tr>
<td>LASER</td>
<td>Light Amplification by Stimulated Emission of Radiation</td>
</tr>
<tr>
<td>LAVA</td>
<td>Local Abnormal Ventricular Activity</td>
</tr>
<tr>
<td>LB</td>
<td>Left Bundle</td>
</tr>
<tr>
<td>LBB</td>
<td>Left Bundle Branch</td>
</tr>
<tr>
<td>LBBB</td>
<td>Left Bundle Branch Block</td>
</tr>
<tr>
<td>LCC</td>
<td>Left Coronary Cusp</td>
</tr>
<tr>
<td>LCx</td>
<td>Left Circumflex</td>
</tr>
<tr>
<td>LFE</td>
<td>Left Fascicle</td>
</tr>
<tr>
<td>LGE</td>
<td>Late Gadolinium Enhancement</td>
</tr>
<tr>
<td>LICU</td>
<td>Low Intensity Collimated Ultrasound</td>
</tr>
<tr>
<td>LLR</td>
<td>Lower Loop Recency</td>
</tr>
<tr>
<td>LMCA</td>
<td>Left Main Coronary Artery</td>
</tr>
<tr>
<td>LMWH</td>
<td>Low Molecular Weight Heparin</td>
</tr>
<tr>
<td>LN</td>
<td>Lymph Node</td>
</tr>
<tr>
<td>LOM</td>
<td>Ligament of Marshall</td>
</tr>
<tr>
<td>LP</td>
<td>Late Potential</td>
</tr>
<tr>
<td>LPF</td>
<td>Low Pass Filter</td>
</tr>
<tr>
<td>LPFB</td>
<td>Left Posterior Fascicular Block</td>
</tr>
<tr>
<td>LQTS</td>
<td>Long QT Syndrome</td>
</tr>
<tr>
<td>LSIVCD</td>
<td>Non-specific Intraventricular Conduction Defect</td>
</tr>
<tr>
<td>LSVC</td>
<td>Left Superior Vena Cava</td>
</tr>
<tr>
<td>LV</td>
<td>Left Ventricle</td>
</tr>
<tr>
<td>LVET</td>
<td>Left Ventricular Outflow Tract</td>
</tr>
<tr>
<td>MAP</td>
<td>Monophasic Action Potential</td>
</tr>
<tr>
<td>MAT</td>
<td>Multifocal Atrial Tachycardia</td>
</tr>
<tr>
<td>MB</td>
<td>Moderator Band</td>
</tr>
<tr>
<td>MDCT</td>
<td>Multidetector Computerized Tomography</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic Equivalent</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial Infarction</td>
</tr>
<tr>
<td>MM</td>
<td>Monomorphic</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic Resonance</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MW</td>
<td>Microwave energy</td>
</tr>
<tr>
<td>NCC</td>
<td>Non-coronary cusp</td>
</tr>
<tr>
<td>NCX</td>
<td>Sodium-Calcium Ion Exchanger</td>
</tr>
<tr>
<td>NOAC</td>
<td>Novel Oral Anticoagulant</td>
</tr>
<tr>
<td>NSIVCD</td>
<td>Non-specific Intraventricular Conduction Defect</td>
</tr>
<tr>
<td>NSVT</td>
<td>Non-Sustained Ventricular Tachycardia</td>
</tr>
<tr>
<td>ORT</td>
<td>Orthodromic Reciprocating Tachycardia</td>
</tr>
<tr>
<td>OMT</td>
<td>Outflow Tract Ventricular Tachycardia</td>
</tr>
<tr>
<td>OVM</td>
<td>Oblique Vein of Marshall</td>
</tr>
<tr>
<td>P2R</td>
<td>Phase 2 Reentry</td>
</tr>
<tr>
<td>PA</td>
<td>Pulmonary Artery</td>
</tr>
<tr>
<td>PAC</td>
<td>Premature Atrial Complex /Contraction</td>
</tr>
<tr>
<td>PAF</td>
<td>Paroxysmal Atrial Fibrillation</td>
</tr>
<tr>
<td>PAM</td>
<td>Papillary Muscles</td>
</tr>
<tr>
<td>PCL</td>
<td>Paced/Pacing cycle length</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase</td>
</tr>
<tr>
<td>PES</td>
<td>Programmed Electrical Stimulation</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PET-CT</td>
<td>Positron Emission Tomography – Computed Tomography</td>
</tr>
<tr>
<td>PI</td>
<td>Preexcitation Index</td>
</tr>
<tr>
<td>PJRT</td>
<td>Permanent Junctional Reciprocating Tachycardia</td>
</tr>
<tr>
<td>PKP</td>
<td>Plakophilin</td>
</tr>
<tr>
<td>PLN</td>
<td>Phospholamban</td>
</tr>
<tr>
<td>PLVT</td>
<td>Pleomorphic Ventricular Tachycardia</td>
</tr>
<tr>
<td>PMVT</td>
<td>Polymorphic Ventricular Tachycardia</td>
</tr>
<tr>
<td>PNP</td>
<td>Phrenic Nerve Palsy</td>
</tr>
<tr>
<td>POTS</td>
<td>Postural Orthostatic Tachycardia Syndrome</td>
</tr>
<tr>
<td>PPI</td>
<td>Postspacing Interval</td>
</tr>
<tr>
<td>PSVT</td>
<td>Paroxysmal Supraventricular Tachycardia</td>
</tr>
<tr>
<td>PTSD</td>
<td>Post-traumatic Stress Disorder</td>
</tr>
<tr>
<td>PV</td>
<td>Pulmonary Vein</td>
</tr>
<tr>
<td>PVAC</td>
<td>Pulmonary Vein Ablation Catheter</td>
</tr>
<tr>
<td>PVC</td>
<td>Premature Ventricular Complex/Contraction</td>
</tr>
<tr>
<td>PVI</td>
<td>Pulmonary Vein Isolation</td>
</tr>
<tr>
<td>QTc</td>
<td>Corrected QT interval</td>
</tr>
<tr>
<td>RA</td>
<td>Right Atrium</td>
</tr>
<tr>
<td>RAA</td>
<td>Right Atrial Appendage</td>
</tr>
<tr>
<td>RAO</td>
<td>Right Anterior Oblique</td>
</tr>
<tr>
<td>RB</td>
<td>Right Bundle</td>
</tr>
<tr>
<td>RBB</td>
<td>Right Bundle Branch</td>
</tr>
<tr>
<td>RBBB</td>
<td>Right Bundle Branch Block</td>
</tr>
<tr>
<td>RCA</td>
<td>Right Corony Artery</td>
</tr>
<tr>
<td>RCC</td>
<td>Right Coronary Cusp</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Clinical Trials</td>
</tr>
<tr>
<td>RF</td>
<td>Radiofrequency</td>
</tr>
<tr>
<td>RFA</td>
<td>Radiofrequency Ablation</td>
</tr>
<tr>
<td>RPV</td>
<td>Right Inferior Pulmonary Vein</td>
</tr>
<tr>
<td>RMS</td>
<td>Room Mean Squared</td>
</tr>
<tr>
<td>RRP</td>
<td>Relative Refractory Period</td>
</tr>
<tr>
<td>RSPV</td>
<td>Right Superior Pulmonary Vein</td>
</tr>
<tr>
<td>RV</td>
<td>Right Ventricle</td>
</tr>
<tr>
<td>RVOT</td>
<td>Right Ventricular Outflow Tract</td>
</tr>
<tr>
<td>RYR</td>
<td>Ryanodine Receptor</td>
</tr>
<tr>
<td>SA</td>
<td>Sinoatrial</td>
</tr>
<tr>
<td>SA</td>
<td>Sinoatrial to Atrial</td>
</tr>
<tr>
<td>SAEGG</td>
<td>Signal Averaged Electrocardiogram</td>
</tr>
<tr>
<td>SAN</td>
<td>Sinoatrial Node</td>
</tr>
<tr>
<td>SCD</td>
<td>Sudden Cardiac Death</td>
</tr>
<tr>
<td>SEMA3A</td>
<td>Semaphorin 3A</td>
</tr>
<tr>
<td>SERCA</td>
<td>Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase</td>
</tr>
<tr>
<td>SF</td>
<td>Safety Factor</td>
</tr>
<tr>
<td>SHD</td>
<td>Structural Heart Disease</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden Infant Death Syndrome</td>
</tr>
<tr>
<td>SMT</td>
<td>Septomarginal Trabeculation</td>
</tr>
<tr>
<td>SMVT</td>
<td>Sustained Monomorphic Ventricular Tachycardia</td>
</tr>
<tr>
<td>SN</td>
<td>Sinus Node</td>
</tr>
<tr>
<td>SNSD</td>
<td>Sinus Node Dysfunction</td>
</tr>
<tr>
<td>SNRT</td>
<td>Sinus Node Recovery Time</td>
</tr>
<tr>
<td>SOO</td>
<td>Site of Origin</td>
</tr>
<tr>
<td>SP</td>
<td>Slow Pathway</td>
</tr>
<tr>
<td>SQTS</td>
<td>Short QT Syndrome</td>
</tr>
<tr>
<td>SR</td>
<td>Sarcoplasmic Reticulum</td>
</tr>
<tr>
<td>SR</td>
<td>Sinus Rhythm</td>
</tr>
<tr>
<td>SSFP</td>
<td>Steady State Free Precession</td>
</tr>
<tr>
<td>SVC</td>
<td>Superior Vena Cava</td>
</tr>
<tr>
<td>SVT</td>
<td>Supraventricular Tachycardia</td>
</tr>
<tr>
<td>TA</td>
<td>Tricuspid Annulus</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TCL</td>
<td>Tachycardia Cycle Length</td>
</tr>
<tr>
<td>TEE</td>
<td>Transeosophageal Echocardiography</td>
</tr>
<tr>
<td>TFC</td>
<td>Task Force Criteria</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Transforming Growth Factor Beta</td>
</tr>
<tr>
<td>TMEM43</td>
<td>Transmembrane Protein 43</td>
</tr>
<tr>
<td>TRPM4</td>
<td>Transient Receptor Potential Melastatin Protein 4</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular Fibrillation</td>
</tr>
<tr>
<td>VA</td>
<td>Ventricular Arrhythmia</td>
</tr>
<tr>
<td>VEGM</td>
<td>Ventricular Electrogram</td>
</tr>
<tr>
<td>VES</td>
<td>Ventricular Extrasystole</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventricular Septal Defect</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular Tachycardia</td>
</tr>
<tr>
<td>WACA</td>
<td>Wide Area Circumferential Ablation</td>
</tr>
<tr>
<td>WCT</td>
<td>Wilson Central Terminal</td>
</tr>
<tr>
<td>WPW</td>
<td>Wolff-Parkinson-White</td>
</tr>
</tbody>
</table>
Contents

Contributors vii-xi
Forewords xiii-xv
Preface xvii
Acknowledgments xix
List of Abbreviations xxii-xxiii

SECTION A
INTRODUCTION AND BASICS OF CARDIAC ELECTROPHYSIOLOGY

1. Electrophysiology Study: Indications, Hardware and Set-up, Catheter Placement
 Ajit Thachil 3-30
2. Electrophysiology Study: Technical Details, Electrograms, Noise and Filtering
 Katherine Duello, KL Venkatachalam 31-41
3. Measurements of Basic Intervals, Refractory Periods and Programmed Electrical Stimulation
 B Hygriv Rao 43-53
4. Sinus Node Function Evaluation and Abnormalities
 Watchara Lohawijarn, Negar Salehi, Vini Singh, Aravdeep S Jhand, Ranjan K Thakur 55-63
5. Atrioventricular Conduction and Block
 Kartikeya Bhargava 65-96

SECTION B
FUNDAMENTALS OF CARDIAC ANATOMY, IMAGING, MAPPING AND ABLATION

6. Cardiac Anatomy for Electrophysiologists
 José Angel Cabrera, Sergio Castrejón, Damián Sánchez-Quintana 99-118
7. Imaging in Cardiac Electrophysiology
 Gerard Loughlin, Karen Ordovas, Edward P Gerstenfeld 119-133
 Daniel Pelchovitz, Rishi Arora 135-147
9. Three-dimensional Mapping of Cardiac Arrhythmias: Techniques, Principles and Application
 Freddy Del-Carpio Munoz, Samuel J Asirvatham 149-167
10. Radiofrequency Ablation: Principles and Biophysics
 Abhishek Deshmukh, Paul Friedman 169-188
11. Non-Radiofrequency Sources of Ablation
 Sampath Gunda, Moustapha Atoui, Dhanunjaya Lakkireddy 189-201
SECTION C

SUPRAVENTRICAL TACHYARRHYTHMIAS: AV NODE-DEPENDENT TACHYCARDIAS

12. Supraventricular Arrhythmias: Classification
 Vikas Kalra, Mithilesh K Das
 205-211

13. Supraventricular Tachycardias: Approach during Electrophysiology Study
 Peter Cheung, Taresh Taneja, Shoie K Stephen Huang
 213-222

14. Supraventricular Tachycardias: Baseline Features during Sinus Rhythm and Tachycardia
 John William Schiefer, Komandoor Srivathsan
 223-246

15. Supraventricular Tachycardias: Ventricular Pacing Maneuvers
 Jeffrey Munro, Dan Sorajja, Win-Kuang Shen
 247-264

16. Supraventricular Tachycardias: Atrial Pacing Maneuvers
 Nishant Verma, Bradley P Knight
 265-271

17. Atrioventricular Nodal Reentrant Tachycardia: Classification, Electrophysiological Features, and Ablation
 Demosthenes G Katritsis, Mark E Josephson
 273-279

18. Wolff-Parkinson-White Syndrome and Atrioventricular Accessory Pathway-related Arrhythmias: Localization, Mapping and Ablation
 Rahul Jain, John M Miller
 281-302

19. Mahaim Fiber Accessory Pathways and Other Variants of Preexcitation
 Shomu Bohora
 303-329

20. Junctional Tachycardia
 Leonard A Steinberg, Benzy J Padanilam
 331-340

SECTION D

SUPRAVENTRICAL TACHYARRHYTHMIAS: ATRIAL TACHYCARDIA, FLUTTER AND FIBRILLATION

21. Focal Atrial Tachycardia and its Differentiation from Macroreentrant Atrial Tachycardia
 Chrishan J Nalliah, Jonathan M Kalman
 343-349

22. Atrial Flutter: Classification, Mechanisms and Management
 Yanfei Yang, Melvin Scheinman
 351-360

23. Atrial Fibrillation: Classification and Mechanisms of Initiation and Maintenance
 361-374

 Rajiv Mahajan, Darragh Twomey, Dennis H Lau, Prashanthan Sanders
 375-387

25. Atrial Fibrillation Ablation: Substrate Modification and Other Strategies
 Tilman Maurer, Erik Wissner, Karl-Heinz Kuck
 389-399
SECTION E

VENTRICULAR TACHYARRHYTHMIAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>Introduction to Ventricular Arrhythmias</td>
<td>George Shaw, David Callans</td>
<td>443-447</td>
</tr>
<tr>
<td>31.</td>
<td>Monomorphic Ventricular Tachycardia: Mechanisms and Etiology</td>
<td>Jianqing Li, Mark E Josephson</td>
<td>449-464</td>
</tr>
<tr>
<td>32.</td>
<td>Ventricular Tachycardia in Ischemic and Nonischemic Cardiomyopathy: Reentrant Circuits, Mapping Techniques and Ablation Strategies</td>
<td>Adam Lee, Haris M Haqqani</td>
<td>465-487</td>
</tr>
<tr>
<td>33.</td>
<td>Ventricular Tachycardia in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy</td>
<td>Hugh Calkins</td>
<td>489-500</td>
</tr>
<tr>
<td>34.</td>
<td>Ventricular Tachycardia in Specific Cardiomyopathies: Sarcoidosis and Tuberculosis</td>
<td>Daljeet Kaur Saggu, Calambur Narasimhan</td>
<td>501-510</td>
</tr>
<tr>
<td>35.</td>
<td>Idiopathic Left Ventricular Tachycardia</td>
<td>Akihiko Nogami</td>
<td>511-530</td>
</tr>
<tr>
<td>36.</td>
<td>Idiopathic Outflow Tract Ventricular Tachycardia</td>
<td>Jackson J Liang, Sanjay Dixit</td>
<td>531-545</td>
</tr>
<tr>
<td>37.</td>
<td>Idiopathic Ventricular Tachycardia from the Mitral Annulus, Papillary Muscles and Other Sites</td>
<td>Takumi Yamada</td>
<td>547-570</td>
</tr>
<tr>
<td>38.</td>
<td>Bundle Branch Reentry: Mechanisms, Diagnosis and Management</td>
<td>Zalmen Blanck, Anwer Dhala, Masood Akhtar</td>
<td>571-582</td>
</tr>
<tr>
<td>39.</td>
<td>J Wave Syndromes</td>
<td>Charles Antzelevitch, Bence Patocskaia</td>
<td>583-603</td>
</tr>
<tr>
<td>40.</td>
<td>Early Repolarization Syndrome and Risk of Sudden Cardiac Death</td>
<td>Peter A Noseworthy</td>
<td>605-611</td>
</tr>
<tr>
<td>41.</td>
<td>Idiopathic Ventricular Fibrillation: Mechanisms and Management Strategies</td>
<td>Arnon Adler, Raphael Rosso, Sami Viskin</td>
<td>613-626</td>
</tr>
<tr>
<td>42.</td>
<td>Ventricular Arrhythmia Storm: Etiology, Mechanisms and Management</td>
<td>SP Abhilash, Narayanan Namboodiri</td>
<td>627-634</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Entrainment: Principles and Clinical Applications</td>
<td>637-657</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ivan Cakulev, Albert L Waldo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Wide QRS Complex Tachycardia: An Electrophysiologic Approach</td>
<td>659-703</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masood Akhtar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Provocative Drug Testing in the Electrophysiology Lab</td>
<td>705-709</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Venkata A Narla, Nitish Badhwar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Catheter Ablation in Children</td>
<td>711-716</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philip Wackel, Bryan Cannon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Epicardial Ablation: Techniques and Applications</td>
<td>717-725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tahmeed Contractor, Roderick Tung, Noel G Boyle, Kalyanam Shivkumar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index | 727 |
Introduction

The most common mechanism of sustained monomorphic ventricular tachycardia (SMVT) is reentry related to scar tissue, usually in patients with ischemic or nonischemic cardiomyopathies. However, reentry in the His-Purkinje system (HPS), also called bundle branch reentry (BBR), accounts for approximately 6% of SMVT in patients with structural heart disease. This is a unique type of VT because the reentry circuit is well defined: the His-bundle (HB), the bundle branches and transseptal myocardial conduction are the components of the reentry circuit. Although relatively uncommon, this type of VT may be more frequent than generally suspected for the following reasons:

- Syncope or sudden death are the most common manifestations of this arrhythmia, and 12-lead electrocardiographic (ECG) documentation usually is not available.
- Induction of this mechanism of VT in the electrophysiology (EP) laboratory may be difficult or not reproducible, and a variety of electric stimulation techniques or pharmacologic maneuvers that might not be used routinely in EP laboratories may be required.
- An HB recording during VT is necessary for the diagnosis of this arrhythmia, and may not be obtained during EP studies performed solely for VT.
- In the United States and in many parts of the world, defibrillator implantation is usually performed without EP evaluation, even in patients implanted for secondary prevention of life-threatening ventricular arrhythmias.

It is important to recognize BBR as the mechanism of VT because catheter ablation of the right bundle branch...
(RBB), a procedure that can be easily performed in most patients and has a high success rate, is curative of this type of VT.

MECHANISMS OF BUNDLE BRANCH REENTRY

Isolated BBR beats can be found in up to 50% of patients with normal intraventricular conduction undergoing EP studies; it is a finding without any prognostic significance. The QRS morphology in these beats, or when sustained tachycardia is induced, will depend upon which bundle branch is used for antegrade propagation of the electric impulse: the QRS will exhibit a left (L), or right bundle branch block (RBBB) morphology, if the impulse propagates down the RBB or the LBB, respectively. The induction of isolated BBR beats or sustained BBR tachycardia share a common mechanism, as follows (Figure 38.1).

During right ventricular (RV) programmed stimulation using a constant basic drive, a premature beat (S2) with a long coupling period is introduced and retrograde conduction to the HB occurs via the RBB, resulting in short V2-H2 intervals (Figure 38.1A). As the S2 coupling periods are shortened, progressive delay in the retrograde RBB conduction is encountered (longer V2-H2), while propagation of the impulse proceeds transseptally into the LBB (which has shorter refractoriness than the RBB). Additional shortening of the coupling periods reach the effective refractory of the RBB, resulting in retrograde conduction block (Figures 38.1B and C). Propagation of the stimulus continues transseptally, and via the LBB to the HB. A retrograde HB potential, inscribed after the local ventricular electrogram (EGM), becomes apparent. Further conduction delay in the LBB allows recovery of the initial site of the block in the RBB, allowing the impulse to propagate antegrade and activate the RV. This results in a wide QRS complex with a left bundle branch block (LBBB) pattern, the so-called V3 phenomenon, BBR beat, or a macro-reentrant beat. It should be noted that there is an inverse relationship between the retrograde conduction delay in the LBB (V2-H2), and the degree of recovery of the antegrade conduction in the RBB (H2-V3). Longer conduction times in the LBB (longer V2-H2), facilitate the antegrade recovery of the RBB, resulting in shorter H2-V3 intervals. On the other hand, insufficient delay in V2-H2 (i.e., longer coupling periods) may result in a longer H2-V3.

It has been shown that reentry in the HPS is more likely to occur when premature beats are introduced during basic drives that incorporate short-long sequences, in contrast to constant basic drives. This is due to the cycle length dependency of the HPS refractoriness. It has been suggested that an abrupt change in cycle length (short-to-long) may result in conduction block at a more distal site in the muscle-Purkinje-RBB axis, which will allow sufficient recovery of excitability in the RBB-Purkinje-muscle to allow antegrade conduction and reentry. This also will result in a shorter H2-V3 interval.

Although the most common type of BBR has an LBBB pattern, BBR with an RBBB pattern also may occur during RV stimulation. During this type of reentry, there is a retrograde LBBB and the impulse retrogradely propagates to the HB via the RBB. This can only occur when the LBB refractoriness is longer than that of the RBB or when retrograde RBB conduction resumes after a bilateral HPS block (gap phenomenon). This type of reentry also may be seen during left ventricular (LV) stimulation, as retrograde LBBB may be easier to accomplish given the proximity of the LBB to the stimulation site.

In patients with normal intraventricular conduction, BBR is a limited phenomenon, and if short-to-long pacing sequences are used, up to 3 BBR beats may be seen. In most cases, the reentry terminates in the retrograde limb of the circuit, in the muscle-Purkinje-LBB axis. Rarely, the reentry will terminate in the antegrade limb. The maintenance of this phenomenon is critically dependent upon the relationship between the conduction velocity and the recovery of excitability in front of the reentrant impulse. The presence of conduction abnormalities (i.e., intraventricular conduction delay) facilitates the development of clinically relevant sustained reentry.

Another, much less common, type of HPS reentry with a narrow QRS complex has been described in the presence of normal intraventricular conduction during RV stimulation. This occurs when there is retrograde conduction via the LBB, followed by antegrade propagation via the RBB and one of the LBB fascicles, resulting in a narrow QRS with variable axis, depending upon which fascicle is used for antegrade conduction.

CLINICAL CHARACTERISTICS OF PATIENTS WITH BBR-VT

Sustained BBR-VT usually occurs in patients with significant structural heart disease: LV dysfunction with low ejection fraction and congestive heart failure are typical findings. Although nonischemic cardiomyopathy is the underlying substrate in about 45% of these patients, this type of VT can also be seen in ischemic and valvular cardiomyopathies, and also has been reported in patients with Ebstein’s anomaly, hypertrophic cardiomyopathy, and any other type of structural heart disease associated with abnormal intraventricular conduction. Myotonic dystrophy and other types of dystrophies also can be a substrate for this VT given the involvement of the HPS in these conditions. Rarely, patients with isolated HPS disease, without other evidence of cardiac disease, have been reported to develop sustained BBR. In some patients, valvular replacement surgery (aortic or mitral) predisposes them to develop...
Figures 38.1A to C: In Panels A, B, and C, the tracings displayed are, from top to bottom, surface ECG leads 1, 2 and V1, and intracardiac recordings from the high right atrium (HRA), His-bundle (HB), right bundle branch (RB), and time lines (T). The three panels show the effect of premature ventricular beats introduced with progressively shorter coupling periods to a constant basic drive in the retrograde conduction in the His-Purkinje system. During the constant ventricular drive (700 ms), retrograde conduction is by way of the right bundle branch; this impulse collides with the transeptally conducted impulse in the left bundle branch (see diagram). A premature ventricular beat (coupling period 340 ms) results in slowing of the retrograde right bundle branch conduction, with subsequent emergence of the right bundle branch and HB potentials after the local ventricular electrogram. Note that the right bundle branch potential precedes the HB potential (V2 – RB2 = 200 ms versus V2 – HB2 = 215 ms) as expected with retrograde conduction proceeding via the right bundle branch. In Panel B, the introduction of a premature beat with a shorter coupling period (S2 330 ms) results in (proximal) retrograde block in the right bundle branch, which allows the transeptally conducted impulse to reach the HB via the left bundle branch. Note the change in the sequence of HB activation compared to Panel A (V2 – RB2 = 165 ms versus V2 – H2 = 165 ms). The HB and the right bundle branch are simultaneously activated, as expected during retrograde conduction via the LBB. In Panel C, the coupling period of S2 is further shortened to 300 ms, which results in retrograde block in the distal right bundle branch. This shift in the site of right bundle branch block, and the slower transeptal (not shown) and left bundle branch retrograde conduction, allow recovery of the site of block and activation of the right ventricle via the RBB (see diagram), resulting in a bundle branch reentrant beat with a left bundle branch block morphology, also called V3 phenomenon, or macro-reentrant beat.
sustained BBR in the immediate postoperative period.18 This group of patients who developed BBR postoperatively had better preserved cardiac function and left ventricular ejection fraction than the typical patient with cardiomyopathy and BBR (LVEF 44\%). Of course, the most important determinant of long-term survival in these patients is the degree of cardiac dysfunction.1,5,16,18,21

Clinical Presentation

Sustained BBR is usually a fast tachycardia, and given the association with significant cardiac disease, it results in significant hemodynamic compromise: syncope or sudden death are the clinical presentation in up to 70\% of these patients.1,5 Twelve-lead ECG documentation of the VT is rarely available, so the relative incidence of spontaneous VT with LBBB or RBBB morphology is unknown.

ECG Findings

The most common abnormalities include mild PR interval prolongation in sinus rhythm (SR) (average 256 ms).1,5 About 25\% of patients have atrial fibrillation as the intrinsic rhythm. Most patients have an intraventricular conduction delay with an LBBB pattern. Rarely, an RBBB pattern is seen, a finding that does not exclude BBR as the mechanism of the VT, because the RBBB pattern may reflect antegrade conduction delay, rather than complete antegrade block, in the RBB. In the same context, a complete LBBB pattern may also be a manifestation of antegrade conduction delay, rather than complete conduction block. Even in the presence of a complete antegrade conduction block, the bundle branch may still be able to exhibit retrograde conduction, a necessary requirement for BBR to occur.16

In our experience, atrioventricular (AV) dissociation was present in nearly 100\% of patients with sustained BBR.1,5 This may be due to the fast cycle lengths of BBR and the presence of drugs that may depress AV conduction (e.g., beta-blockers, digoxin).

ELECTROPHYSIOLOGIC CHARACTERISTICS OF PATIENTS WITH BBR-VT

The presence of conduction disease in the HPS, manifested as prolongation of the His-ventricle (HV) interval, is a cardinal finding in this patient population, regardless of the type of underlying structural substrate.1,5,6-12 In our experience, the HV interval ranged from 60 ms to 110 ms (average 80 ms).5

BBR is most commonly induced by RV stimulation. This can be accomplished by the introduction of premature ventricular stimuli to a constant basic drive, or more commonly, by the introduction of premature stimuli to a drive incorporating a pause before introducing the premature beat(s), so-called short-long-short.13-15 We routinely use a 600 ms pause during a 400 ms drive prior to introducing premature beats. As the electric properties of the HPS may vary between patients, the use of protocols incorporating different short-long sequences may be necessary (i.e. 350–650, 400–700, etc.).13-15 Induction of BBR with an RBBB may also require LV stimulation.

In some instances, the use of class 1A anti-arrhythmic drugs (e.g., procainamide) may facilitate induction of sustained BBR when the VT is not induced in the baseline state. Procainamide prolongs the antegrade and retrograde conduction times of the HPS, and by prolonging the HV and VH intervals, allows the penetration by the reentrant impulse into a better recovered RBB or LBB, respectively.22 It should be noted that induction of BBR should be attempted during the slow administration of these drugs, as they may also abolish this type of reentry. Sometimes, isoproterenol may also be useful to induce this type of VT. However, the use of these drugs has not been systematically studied in patients with sustained BBR.

In contrast to other types of VT, BBR-VT can almost always be terminated by overdrive ventricular stimulation, regardless of the VT cycle length (unless, of course, ventricular fibrillation is induced). The rationale for this is the relative large size of the reentrant circuit, the presence of an “excitable conduction gap,” and the proximity of the HV stimulation site to the reentrant circuit. All these factors facilitate the penetration of the circuit by the propagated stimulated impulses.

Diagnostic Criteria for BBR-VT

The EP criteria diagnostic of BBR are shown in Table 38.1. The diagnosis of BBR-VT requires intracardiac recordings during the induced VT (i.e., HB and/or bundle branch potentials). In some cases, it may be difficult to obtain an HB recording during the VT, in which case, an RBB potential may be more stable and easier to record, and may facilitate the diagnosis.8

<table>
<thead>
<tr>
<th>Table 38.1: Diagnostic criteria for BBR-VT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The VT exhibits QRS morphology that is typical of an LBBB or RBBB, consistent with ventricular depolarization via the His-Purkinje system.</td>
</tr>
<tr>
<td>2. The onset of ventricular activation is preceded by a His-bundle potential and bundle branch potentials, with an appropriate sequence of activation to the corresponding QRS morphology, and with stable HV, RB-V, or LB-V intervals.</td>
</tr>
<tr>
<td>3. Spontaneous variations in V-V intervals are preceded by similar variations in H-H intervals.</td>
</tr>
<tr>
<td>4. Induction of tachycardia is consistently dependent upon achieving a critical delay in the His-Purkinje system.</td>
</tr>
<tr>
<td>5. The VT cannot be induced after successful catheter ablation of the RBB.</td>
</tr>
</tbody>
</table>
Chapter 38: Bundle Branch Reentry: Mechanisms, Diagnosis and Management

Figure 38.2: Twelve-lead surface electrocardiogram of spontaneous bundle branch reentrant tachycardia with left bundle branch QRS pattern and left-axis deviation at a rate of 215 bpm (not labeled). Because ventricular activation occurs by way of the right bundle branch, the QRS configuration is suggestive of intraventricular aberrant conduction. (Used with permission from Elsevier from Zipes DP, Jalife J. Cardiac Electrophysiology: From Cell to Bedside, 2nd edn. (2005) Saunders, Philadelphia, Penn. p. 881).

Figures 38.3A and B: Bundle branch reentry with left (A) and right (B) bundle branch block morphology. Tracings, from top to bottom in each panel, include surface ECG leads 1, 2 and V1, and intracardiac recordings from the right atrium (RA), His-bundle (HB), and time lines (T). In Panel A, bundle branch reentry tachycardia with a left bundle branch block morphology is displayed. Note the relatively slow cycle length, unusual in this type of tachycardia. The HV interval of 90 ms was identical to the one in sinus rhythm. In contrast, during tachycardia with a right bundle branch block, the HV interval is much longer, 250 ms. Antegrade activation in each tachycardia is dependent upon the RBB and the LBB, respectively, resulting in significantly different HV intervals.

During BBR-VT with an LBBB pattern (Figure 38.2), the most common type of induced BBR-VT, the HV interval is similar to, or slightly longer than, the HV interval in SR (Figure 38.3A). Rarely, if a very proximal HB recording is obtained, a slightly shorter HV interval may be obtained during the VT as the HB and the RBB may be simultaneously activated via the LBB.

In contrast, the induction of BBR with an RBBB pattern may result in an HV interval that is significantly different than in sinus rhythm (Figure 38.3B). In patients with BBR,
the HV interval during SR is generally determined by the conduction properties of the RBB. However, during VT with an RBBB pattern, the HV interval is determined by the conduction properties of the LBB. Different antegrade conduction properties of the RBB and the LBB may account for different HV intervals during intrinsic rhythm versus tachycardia.

Recording the HB potential and the bundle branch potentials can document the sequence of activation of the HPS during the VT, an important diagnostic criteria for BBR (Table 38.1, Figures 38.4, 38.5 and 38.6A). During VT with an LBBB pattern, activation of the LBB is followed by activation of the HB, which in turn is followed by activation of the RBB. The opposite sequence of activation occurs during BBR-VT with an RBBB pattern.

As ventricular activation is dependent upon the propagation of the impulse in the HPS, irregularities in the H-H and V-V cycle lengths during BBR (typically seen at the onset of the tachycardia), will preclude similar irregularities in the corresponding V-V cycle lengths (Figure 38.6B). This is an important criterion to distinguish VT due to BBR from scar-related VT with incidental (retrograde) activation of the HPS.

Figures 38.4A and B: Bundle branch reentry (BBR) with right bundle branch block (RBBB) morphology. Panel A shows, from top to bottom, surface ECG leads 1, 2 and V1, and intracardiac recordings from the right atrium (RA), His-bundle, and time lines (T). Panel B shows the same surface ECG leads, and intracardiac recordings from the right bundle branch (RB), right ventricle (RV), and time lines (T). During BBR with RBBB morphology (Panel A), the HV is determined by the conduction properties of the left bundle branch, in this case, 250 ms. In contrast, during sinus rhythm, the HV interval, determined primarily by the right bundle branch, was 90 ms (not shown). In Panel B, the right bundle branch potential is shown. Note the appropriate sequence of activation: the RBB potential is recorded before the His-bundle potential, as expected in this type of BBR reentry.

Merino et al. described another diagnostic criterion for BBR. Given the close proximity between the BBR reentry circuit (i.e., distal RBB) and the RV apex, the post-pace interval was equal or <30 ms when RV stimulation was performed during BBR with an LBBB (compared to >100 ms for ventricular tachycardia) (Figure 38.7). This may be particularly useful when an HB or RBB potential cannot be recorded.

BBR-VT with LBBB Pattern

As previously mentioned, this is, by far, the most common type of HPS-related VT, perhaps because programmed stimulation is routinely performed from the RV. In our experience, induction of this VT required LV stimulation in 2 of 35 patients. The QRS morphology is suggestive of aberrant conduction (Figure 38.2). Because myocardial activation is by way of the HPS, in this case the RBB. In the absence of antiarrhythmic drugs, the cycle length of this VT is fast, ranging from 200 ms to 300 ms. The QRS axis is usually normal or leftward. Rightward axis is rare, unless the QRS in SR also is rightward. The HV interval ranges from 55 ms to 160 ms.

BBR-VT with RBBB Pattern

In this type of VT, activation of the HB is by the RBB, followed by antegrade conduction via the LBB (Figures 38.4A and B). We induced this VT in 6 of 35 patients. In 2 of the 6 patients, it was the only type of VT inducible. This type of VT, in contrast to the one with LBBB pattern, more often required LV or atrial stimulation. A functional proximal RBBB may occur during atrial pacing (or atrial fibrillation), slow antegrade propagation over the LBB may allow recovery of the RBB, facilitating BBR. This type of VT may be less common than BBR with an LBBB pattern because LV stimulation is not routinely performed, but also due to the shorter retrograde refractoriness of the LBB (compared to the RBB), in which case, retrograde block may be more difficult to accomplish during RV pacing. The QRS axis in this type of VT may be normal, leftward, or rightward, depending upon which fascicle is used for antegrade propagation. In our experience, the cycle length of this tachycardia has ranged from 220 ms to 360 ms, and the HV interval between 65 ms and 250 ms. Although rare, this type of VT was more commonly seen in the immediate postoperative period after valvular replacement surgery, compared to patients with nonischemic cardiomyopathy.

Interfascicular (IF)-VT

In this type of VT, the reentry circuit involves the distal LBB, the left-sided fascicles, and myocardial conduction (Figure 38.8). The RBB is not part of the reentry circuit and is activated incidentally; therefore, catheter ablation of the RBB will not eliminate this type of VT. This mechanism of VT needs to be excluded from BBR with an RBBB pattern because in both cases the QRS morphology is RBBB pattern.
The sequence of activation of the HPS, being different in these two tachycardias, may be helpful in differentiating them. During BBR with RBBB (i.e., retrograde conduction via the RBB), the RBB is activated before the HB is activated. In contrast, during IF-VT, the RBB is expected to be activated after the HB activation. Patients with IF-VT usually have concomitant BBR.25,26 We recently noted that an RBBB may be a prerequisite for IF reentry (spontaneous or inducible).25 The RBBB may be pre-existing or occur after catheter ablation for BBR-VT. The HV interval during IF-VT is usually shorter than in SR, as the "turnaround" between the fascicles is distal to the HB. Depending on the fascicle used for antegrade conduction, the QRS during IF-VT will be rightward or leftward. Ablation of the LBB, or one of its fascicles, is necessary to eliminate this type of VT and has been performed successfully.25-27

DIFFERENTIAL DIAGNOSIS OF BBR-VT

BBR-VT should be suspected in the presence of a wide QRS complex tachycardia with AV dissociation, where HB potentials precede ventricular activation. The diagnosis of BBR-VT requires careful analysis of the sequence of HPS activation and the relationship between changes in H-H and V-V cycle lengths. Otherwise, this mechanism may go unrecognized and be attributed to the common variety of...
Figures 38.6A and B: Diagnosis of bundle branch reentry. Panel A, from top to bottom, shows surface ECG leads 1, 2 and V1, and intracardiac recordings from proximal and distal His-bundle (HBp and HBd), right bundle branch (RB), and time lines (T). Intracardiac recordings during bundle branch reentrant tachycardia show the His and bundle branch potentials to precede the onset of the surface ECG, the appropriate sequence of His-Purkinje system activation during tachycardia with a left bundle branch pattern (i.e., from proximal to distal), and a very short cycle length, typical of this type of reentry. Panel B, from top to bottom, shows surface ECG leads 1, 2 and V1, and intracardiac recordings from the right atrium (RA), His-bundle (HB), and time lines (T). This figure shows an important criteria for bundle branch reentrant tachycardia: during irregular cycle lengths, H-H changes will precede and dictate the corresponding V-V changes.

Figure 38.7: Post-pace interval during bundle branch reentry. Tracings, from top to bottom, include surface ECG leads 1, 2 and V1, and intracardiac recordings from the right atrium (RA), His-bundle (His), and right ventricular apex (RVA). This figure shows a post-pace interval (PPI) of 250 ms after a train of ventricular pacing from the RV apex (first four beats of the figure). A similar PPI from this pacing site as the cycle length of tachycardia is consistent with bundle branch reentry.

Figure 38.8: Interfascicular reentrant tachycardia. Displayed from top to bottom are surface ECG leads 1, 2 and V1 and intracardiac recordings from the right atrium (RA), proximal and distal His-bundle (HBp and HBd), right ventricle (RV), left bundle branch (LB), and time lines (T). Intracardiac recordings during interfascicular tachycardia show the appropriate sequence of His-Purkinje system activation: the left bundle branch is activated first, followed by simultaneous activation of the HB and the RB. The HV interval (not labeled) is 25 ms shorter than in sinus rhythm, a finding consistent with this mechanism of tachycardia. The QRS morphology is right bundle branch block (RBBB). In bundle branch reentry with the same QRS pattern (e.g., RBBB), the opposite sequence of activation would be expected (e.g., RB, followed by LB).
scar-related VT. Perhaps, the most important factor in the diagnosis of BBR-VT is to suspect it in the appropriate clinical setting.

Myocardial Scar-related VT

This type of VT, with retrograde activation of the HPS, is the most important consideration and should always be differentiated from BBR-VT. In most scar-related VTs, the HB activation is “obscured” by the local ventricular EGM, and it is not usually seen. However, in some VTs, the HB potential may be recorded before the local ventricular EGM but after the onset of the QRS in the 12-lead ECG, which rules out BBR. In other VTs, an HB or BB potential may appear to precede the onset of the surface QRS, a finding similar to BBR-VT ([Figure 38.9](#)). In these cases, and in contrast to BBR, changes in V-V intervals will precede changes in H-H intervals. In addition, given the same QRS morphology (i.e., RBBB), analysis of the sequence of HPS activation may be helpful as it may differ between myocardial VT, where the HB may be activated retrogradely by the LBB, and BBR-VT, where the HB also is activated retrogradely, but by the RBB. Finally, if myocardial VT is suspected, RV pacing during SR at the same cycle length as the VT may be helpful to demonstrate retrograde HPS activation ([Figures 38.10A and B](#)), a finding that would support a myocardial VT.

Supraventricular Tachycardia with Aberrant Conduction

Patients with BBR almost never exhibit 1:1 AV conduction during tachycardia. In addition, the sequence of activation

Figure 38.9: Incidental activation of the His-bundle during myocardial ventricular tachycardia initiated after catheter ablation of the right bundle branch. Tracings, from top to bottom, are surface ECG leads I and V1, high right atrium (HRA) and proximal and distal His-bundle recordings (HBp and HBd) and time lines (T). All intervals are in milliseconds. During induced sustained ventricular tachycardia with a left bundle branch block QRS configuration, each ventricular electrogram is preceded by a His-bundle potential. However, retrograde activation of the His-Purkinje system is coincidental, and changes in V-V intervals precede or are unrelated to changes in H-H intervals, as expected during myocardial ventricular tachycardia. In this case, activation of the His-bundle is retrograde through the left bundle branch, the conduction of which was severely impaired. (From Blanck Z, et al. Bundle Branch Reentrant Ventricular Tachycardia: Cumulative Experience In 48 Patients. J Cardiovasc Electrophysiol 1993;4:253-63. Used with permission from John Wiley and Sons)

Figures 38.10A and B: Tracings, from top to bottom, show surface ECG leads 1, 2 and V1, and intracardiac recordings from proximal and distal right bundle branch (RBp and RBd) and time lines (T). Panel A shows the RB potentials in sinus rhythm. Panel B displays the end of a ventricular pacing drive (first 4 beats) followed by ongoing ventricular tachycardia (VT). Note that the RB is captured during ventricular pacing, with a similar sequence as during VT, a finding consistent with myocardial, scar-related VT
of the HPS is different: in supraventricular tachycardia, the HPS is activated antegrade, with a similar sequence as in sinus rhythm. In contrast, during BBR, the HPS sequence of activation is retrograde usually via the LBB.

Atriofascicular Reentry

In this tachycardia, ventricular activation also is by way of the RBB, and the HB is activated retrogradely, as in BBR. However, the sequence of HPS activation is different in both tachycardias: in BBR with an LBBB pattern, the HB is activated before the RBB, and the opposite sequence is seen in atriofascicular reentry. Also, the atrium is part of the atriofascicular reentry circuit, and most patients with atriofascicular reentry do not have structural heart disease. Atrial pacing in patients with atriofascicular reentry may show pre-excitation.

BBR-VT should always be suspected in patients with nonischemic cardiomyopathy presenting with syncope or sudden death. It also should be suspected in patients with inducible SMVT and conduction abnormalities, or when the VT has an LBBB pattern.

TREATMENT OF BBR-VT

Radiofrequency catheter ablation of the RBB is the treatment of choice for BBR-VT (Figures 38.11A to C). This procedure will eliminate both types of BBR (LBBB and RBBB) by creating complete conduction block in the RBB.

In this ablation, a catheter is placed in the septum until an RBB potential is recorded. The nature of this potential is confirmed by the absence of an atrial EGM and an H-RB interval of at least 20 ms. Inadvertent ablation of the HB will result in complete AV block and persistent inducibility.
of BBR. Given the anatomic features of the RBB (relatively thin and superficially located in the sub-endocardium) this procedure is easily performed and successful in the majority of patients. 29

Although catheter ligation of the LBB is technically more challenging than RBB ablation, it can be attempted in select patients with BBR or in patients with IF-VT, as described previously (Figure 38.3). 24,26,27,30 Patients with complete antegrade LBBB (i.e., QRS duration >140 ms) may benefit more from LBB ablation as this will eliminate retrograde conduction in the LBB, eliminate induction of BBR, and prevent complete AV block, a likely complication of RBB ablation in the presence of a complete LBBB. 16

After RBB ablation, prophylactic pacemaker implantation was carried out only if the HV interval prolonged significantly (>90–100 ms), or infra-His block could be documented during atrial stimulation. 5 However, with the advent of biventricular pacing, the role of prophylactic pacing and defibrillator implantation has changed over the years, and the presence of LV dysfunction and congestive heart failure are additional considerations for prophylactic device implantation in these patients. Of note, in 25% of our patients with BBR, a concomitant scar-related SMVT also was induced, 15 another factor when considering device implantation post-ablation.

REFERENCES

Section E: Ventricular Tachyarrhythmias

EDITORS’ SUMMARY

The authors who have taught the electrophysiology community about this unique and fascinating arrhythmia—bundle-branch reentrant tachycardia—provide a well-referenced and well-illustrated summary that is enjoyable to read. Although not a common arrhythmia, bundle-branch reentry is imminently treatable and is a veritable microcosm of all invasive arrhythmia diagnosis. The principles of reset, attempting to find what is in and not in a circuit of a reentrant tachycardia, identifying the driver or the critical link, and the concept of pseudo intervals (the HV during tachycardia and proximal His-V during bundle-branch reentry) are all represented and clearly discussed in this chapter. The early student of invasive electrophysiology would do well to read this chapter along with those on AV node reentry (Chapter 17) and diagnostic maneuvers both for SVT (Chapters 15 and 16) and entrainment (Chapter 43) for a comprehensive foray into the art and science of diagnostic maneuvers for arrhythmia diagnosis.