Textbook of PULMONARY AND CRITICAL CARE MEDICINE

Second Edition

Editor-in-Chief
SK Jindal
MD FAMS FNCCP FICS FCCP
Professor Emeritus
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India
Medical Director, Jindal Clinics, Chandigarh

Associate Editors
Ritesh Agarwal
Ashutosh N Aggarwal
D Behera
Aditya Jindal
Suhail Raoof
PS Shankar

Section Editors
Ritesh Agarwal
Ashutosh N Aggarwal
D Behera
Sunil K Chhabra
Sahajal Dhooria
Randeep Guleria
Richard S Irwin
Aditya Jindal
SK Jindal
Sundeen Salvi
Inderpal Singh Sehgal
Nusrat Shafiq
PS Shankar
Navneet Singh
Balamugesh T
VK Vijayan

Foreword
Sidney S Braman

The Health Sciences Publisher
New Delhi | London | Panama
Contributors

Amit Agarwal MD
Senior Research Fellow
Department of Pediatrics
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Ritesh Agarwal MD DM
Additional Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Stuti Agarwal PhD
Senior Research Fellow
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Ashutosh N Aggarwal MD DM
Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Deepak Aggarwal MD
Associate Professor
Department of Pulmonary Medicine
Government Medical College
Chandigarh, India

Gyanendra Agrawal MD DM
Consultant Pulmonologist
Department of Pulmonology
Jaypee Group of Hospitals
Noida, Uttar Pradesh, India

Anurag Agrawal MD PhD
Associate Professor
Academy of Scientific and Innovative Research, India and
Baylor College of Medicine, Houston, Texas, USA
Principal Scientist
Institute of Genomics and Integrative Biology
Delhi, India

Kanhaiyalal Agrawal MD
Physician
Department of Nuclear Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Gautam Ahluwalia MD FAPS FICP FIACM
Professor
Department of Medicine
Dayanand Medical College and Hospital
Ludhiana, Punjab, India

Suhail Allaqaband MD FACC FCCP
Clinical Associate Professor
Cardiovascular Disease Section
Department of Medicine
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin, USA

Ashima Anand PhD
Principal Investigator
Exertional Breathlessness Studies Laboratory (DST)
Vallabhbhai Patel Chest Institute
University of Delhi, Delhi, India

Ronald Anderson PhD
Consultant
Department of Pulmonology and Internal Medicine
University of the Witwatersrand
Johannesburg, South Africa

Nidhi Anil PhD
Research Associate
Department of Pediatrics
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Mark Astiz MD
Consultant
Weil Medical College
New York Methodist Hospital
Brooklyn, NY, USA

Jon G Ayres MD
Consultant
Institute of Occupational and Environmental Medicine
University of Birmingham
Birmingham, UK

Amanjit Bal MD DNB MAMS
Additional Professor
Department of Histopathology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Sandra Baldacci BSc
Project Associate
Pulmonary Environmental Epidemiology Unit
CNR Institute of Clinical Physiology
Pisa, Italy

Nargis K Bali MB
Senior Resident
Department of Clinical Microbiology
Sher-e-Kashmir Institute of Medical Sciences
Srinagar, Jammu and Kashmir, India
vi Textbook of Pulmonary and Critical Care Medicine

Daniel E Banks MD MS
Professor
Department of Medicine
Uniformed Services University of the Health Sciences
Bethesda, Maryland, USA

Ruchi Bansal MD
Consultant
Department of Medicine, Pulmonary, Critical Care and Sleep Medicine
New York Methodist Hospital
Brooklyn, New York, USA

Maj (Retd) Monica Barne MBBS
Medical Educator
Chest Research Foundation
Pune, Maharashtra, India

Peter J Barnes FRS FMedSci
Margaret Turner-Warwick Professor and Head
Department of Respiratory Medicine
Imperial College London
Airway Disease Section
National Heart and Lung Institute
London, UK

Pranab Baruwa MD
Senior Consultant
Department of Tuberculosis and Respiratory Medicine
Gauhati Medical College and Hospital
Guwahati, Assam, India

D Behera MD FCCP
Professor and Head
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Dinkar Bhasin MD
Resident
Department of Medicine
All India Institute of Medical Sciences
New Delhi, India

Sidney S Braman MD FCCP
Professor
Department of Medicine
Icahn School of Medicine
New York, USA

Bill Brasher DTCD
Former Head
Academic Clinical and Molecular Research
Chest Research Foundation, Pune, India
Director-Scientific Operations
Novo Cellular Medicine Institute
San Fernando, Trinidad and Tobago, Caribbean

R Caroli MD
Consultant Pulmonologist
Department of Pulmonology
Fortis Hospital
Noida, Uttar Pradesh, India

Sonia Cerrai
Project Associate
Pulmonary Environment Epidemiology Unit
CNR Institute of Clinical Physiology
CNR, Pisa, Italy

VK Chadha MD
Head
Epidemiology and Research Division
National Tuberculosis Institute
Bengaluru, Karnataka, India

Arunaloke Chakrabarti MD
Professor and Head
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Abha Chandra MD
Professor and Head
Department of Cardiopulmonary Physiology
All India Institute of Medical Sciences
New Delhi, Delhi, India

Sunil K Chhabra MD
Professor and Head
Department of Pulmonary and Critical Care Medicine
Pt. Bhanwati Dayal Sharma Post Graduate Institute of Medical Sciences
Rohtak, Haryana, India

Rahul Chauhan PhD
Department of Pediatrics
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Anil Chauhan
Department of Pediatrics
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Devasahayam J Christopher MD FCCP FRCP
Professor and Head
Department of Respiratory Medicine
Christian Medical College and Hospital
Vellore, Tamil Nadu, India

Fabio Cibella
CNR Institute of Biomedicine and Molecular Immunology
Palermo, Italy

Stevens Conrad MD PhD FCCP
Professor
Department of Emergency Medicine, Pediatrics and Neurosurgery
Louisiana State University Health Sciences Centre
Shreveport, Louisiana, USA
Ashim Das MD
Professor
Department of Histopathology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Uma Devraj MD
Associate Professor
Department of Pulmonary Medicine
St John’s Medical College
Bengaluru, Karnataka, India

Harakh V Dedhia MBBS
Former Professor
Department of Pulmonary and Critical Care Medicine
West Virginia University School of Medicine
Morgantown, West Virginia, USA

B Vijayalakshmi Devi MD
Additional Professor
Department of Radiodiagnosis
Sri Venkateswara Institute of Medical Sciences
Tirupati, Andhra Pradesh, India

RK Dewan MS
Consultant
Department of Thoracic Surgery
Lala Ram Sarup National Institute of Tuberculosis and Respiratory Diseases
Sri Aurobindo Marg, New Delhi, India

Lakhbir Kaur Dhaliwal MD
Former Professor and Head
Department of Obstetrics and Gynecology
Postgraduate Institute of Medical Education and Research
Chandigarh, India
Consultant Gynecologist, Mohali, Punjab, India

Rajinder Singh Dhaliwal MS MCh
Former Professor and Head
Department of Cardiothoracic and Vascular Surgery
Postgraduate Institute of Medical Education and Research
Chandigarh, India
Consultant Cardiothoracic Surgeon
Mohali, Punjab, India

Bhalinder Dhaliwal MS MCh
Resident
Department of Cardiothoracic Surgery
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Raja Dhar MD MRCP MSc
Consultant
Pulmonary and Critical Care Medicine
Fortis Hospital
Kolkata, West Bengal, India

Abduljabbar Dheyab MD
Internist
Department of Pulmonary, Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Sahajal Dhooria MD DM
Assistant Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Liesel D’silva MD DETRD
Senior Medical Advisor
Specialist in Respiratory Medicine
Mumbai, Maharashtra, India

George A D’Souza MD
Professor and Head
Department of Pulmonary Medicine
St John’s Medical College
Bengaluru, Karnataka, India

Jyothy E MD DTCD
Assistant Professor
Department of Pulmonary Medicine
Government Medical College and Hospital
Kozhikode, Kerala, India

Rachael A Evans MB ChB MRCP (UK) PhD
Consultant
Department of Respiratory Medicine
West Park Healthcare Centre, University of Toronto
Toronto, Ontario, Canada

Charles Feldman MB BCh PhD DSc
Consultant
Department of Internal Medicine
University of the Witwatersrand Medical School
Johannesburg, South Africa

Kenneth R Fretwell MD
Chairman
Department of Surgery
Jamaica Hospital Medical Center
New York, USA

Joseph Friedman MD
Attending Physician
Department of Radiology
Jamaica Hospital Medical Center, New York, USA

Gajanan S Gaude MD
Professor and Head
Department of Pulmonary Medicine
Jawaharlal Nehru Medical College
Belgaum, Karnataka, India

AR Gayathri MD FCCP
Consultant
Department of Respiratory Medicine
Apollo Hospitals
Chennai, Tamil Nadu, India

Vishwsanath Gella MD DM
Senior Consultant Pulmonologist
Department of Pulmonary Medicine
Continental Hospitals
Hyderabad, Telangana, India
Liziamma George MD FCCP
Associate Professor
Department of Clinical Medicine
Weill Cornell Medical College
Director
Medical Intensive Care Unit
New York Methodist Hospital
Brooklyn, New York, USA

AG Ghoshal MD DNB FCCP
Director
National Allergy Asthma Bronchitis Institute
Kolkata, West Bengal, India

Baishakhi Ghosh PhD
Researcher
Chest Research Foundation, Pune, Maharashtra, India
Research Scholar
Symbiosis International University
Pune, Maharashtra, India

Sudheendra Ghosh C MD DTC DMPH
Ex-Professor and Head
Department of Pulmonary Medicine
Government Medical College and Hospital
Thiruvananthapuram, Kerala, India

Karthik Gnanapandithan MD
Former Senior Resident
Department of Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

N Goel MD
Assistant Professor
Department of Pulmonary Medicine
Vallabhbhai Patel Chest Institute
University of Delhi
Delhi, India

Roger S Goldstein MB BS FRCP FCCP FCRP
Consultant
Department of Respiratory Medicine
West Park Healthcare Centre
Toronto, Ontario, Canada

Stephania La Grutta
Institute of Biomedicine and Molecular Immunology
Palermo, Italy

Randeep Guleria MD DM
Professor and Head
Department of Pulmonary, Critical Care and Sleep Medicine
All India Institute of Medical Sciences
Ansari Nagar, New Delhi, India

Kalpalatha K Guntupalli MD FCCP FCCM MACP
Professor
Department of Medicine
Chief, Pulmonary, Critical Care and Sleep Medicine
Baylor College of Medicine
Houston, Texas, USA

Dheeraj Gupta MD DM
Former Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

KB Gupta MD
Senior Professor and Head
Department of Respiratory Medicine
Postgraduate Institute of Medical Sciences
Rohtak, Haryana, India

Mansi Gupta MBBS DM
Fellow
Department of Pulmonary Medicine
Vardhman Mahavir Medical College
Delhi, India

Nalini Gupta MD DNB
Associate Professor
Department of Cytology and Gynecologic Pathology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Nikhil Gupta MD
Assistant Professor
Department of Medicine
Era’s Lucknow Medical College and Hospital
Lucknow, Uttar Pradesh, India

Prahland R Gupta MD DM
Professor and Head
Department of Pulmonary Medicine
NIMS Medical College
Jaipur, Rajasthan, India

Richa Gupta MD
Assistant Professor
Department of Pulmonary, Critical Care and Sleep Medicine
All India Institute of Medical Sciences
New Delhi, India

Vijay Hadda MD
Assistant Professor
Department of Pulmonary, Critical Care and Sleep Medicine
All India Institute of Medical Sciences
New Delhi, India

Group Captain Ajay Handa MD DNB DM FCCP FAPS
Senior Advisor (Medicine and Pulmonary Medicine)
Professor
Department of Internal Medicine (RGUHS)
Command Hospital Air Force
Bengaluru, Karnataka, India

Shu Hashimoto MD PhD
Research Associate
Department of Internal Medicine
Nihon University
Tokyo, Japan
Miyuki Hayashi MD PhD
Research Associate
Department of Pediatrics
Nippon Medical School
Tokyo, Japan

Sean E Hesselbacher MD
Pulmonologist
Department of Pulmonary Medicine
Baylor College of Medicine
Ben Taub General Hospital
Houston, Texas, USA

Harmanjit Singh Hira MBBS DM FCCP
Director Professor
Department of Pulmonary Medicine
Maulana Azad Medical College and Associated Hospitals
New Delhi, India

David Honeybourne MD
Consultant Physician and Clinical Director
Honorary Clinical Reader in Respiratory Medicine and Biological Sciences
Department of Respiratory Medicine
Birmingham Heartlands Hospital
Birmingham, UK

Sunil HV MD
Head
Department of Nuclear Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Christopher Kim Ming Hui MBBS MRCP
Consultant
Department of Medicine
University of Hong Kong
Queen Mary Hospital
The University of Hong Kong
Hong Kong, SAR China

Toru Igarashi MD
Research Associate
Department of Pediatrics
Nippon Medical School
Tokyo, Japan

Mary Sau Man Ip MD FRCP FHKP FHKAM
Mok Hing Yiu Endowed Chair Professor
Head of Medicine
Chief-of-Division of Respiratory Medicine
The University of Hong Kong
Hong Kong, SAR China

Richard S Irwin MD
Professor
Department of Pulmonary, Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Vikram Jaggi MD DNB
Medical Director
Asthma Chest and Allergy Centre
Vasant Enclave, Delhi, India

Sanjay Jain MD
Professor
Department of Internal Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Ashok K Janmeja MD
Professor and Head
Department of Pulmonary Medicine
Government Medical College and Hospital
Chandigarh, India

M Fuad Jan MBBS MD
Cardiovascular Disease Fellow
Aurora Cardiovascular Services
Aurora Sinai/St. Luke's Medical Centers
Milwaukee, Wisconsin, USA

Jeba S Jenifer MD Dip Pal Med
Associate Professor
Palliative Care Unit
Christian Medical College
Vellore, Tamil Nadu, India

Aditya Jindal DNB DM FCCP
Consultant Interventional Pulmonology and Intensivist
Jindal Clinics
Chandigarh, India

SK Jindal MD FAMS FNCCP FICS FCCP
Professor Emeritus
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Medical Director
Jindal Clinics
Chandigarh, India

Umesh N Jindal MD
Senior Consultant and Director
Jindal IVF and Sant Memorial Hospital
Chandigarh, India

VK Jindal PhD
Honorary Professor
Department of Physics
Advanced Centre for Physics
Panjab University, Chandigarh, India

Kusum Joshi MD
Ex-Professor and Head
Department of Histopathology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Consultant Pathologist
Chandigarh, India
Textbook of Pulmonary and Critical Care Medicine

Mamta Kalra PhD
Senior Scientist
Immatics US Inc
Houston, Texas, USA

Madhur Kalyan MSc
Senior Research Fellow
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh, India

F Karakontaki MD
Sismanoglio General Hospital
Athens, Greece

Surender Kashyap MD
Director
Professor and Head
Department of Pulmonary Medicine
Kalpana Chawla Government Medical College
Karnal, Haryana, India

Seth J Koenig MD FCCP
Attending Physician
Department of Pulmonary and Critical Care Medicine
Long Island Jewish Medical Center
New Hyde Park, New York, USA

Scott E Kopec MD
Department of Pulmonary Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Parvaiz A Koul MD FACP FCCP
Professor and Head
 Departments of Internal and Pulmonary Medicine
Sher-i-Kashmir Institute of Medical Sciences
Srinagar, Jammu and Kashmir, India

Sachin Kumar MD DM
Associate Professor
Department of Pulmonary Medicine
All India Institute of Medical Sciences
Raipur, Chhattisgarh, India

Suman Lal MD
Associate Professor
Department of Pathology
New York University Langone Medical Centre
Veterans Affairs New York Harbor Healthcare System
New York, USA

Kim Bong Hubert Lam
Institute of Occupational and Environmental Medicine
University of Birmingham
Birmingham, UK

Romicca Latawa PhD
Research Fellow
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Angeline Lazarus MD MACP FCCP
Professor of Medicine
Uniformed Services University
National Naval Medical Center
Bethesda, Maryland, USA

Sneha Limaye MBBS
Research Fellow
Chest Research Foundation
Pune, Maharashtra, India

Carmen Lurashci-Monjugatta
University of Southern California
Keck School of Medicine
Los Angeles, California, USA

Macy Mei Sze Lui MBBS MRCP FHKAM FHKCP
Honorary Clinical Assistant Professor
Department of Medicine
The University of Hong Kong
Queen Mary Hospital
Hong Kong, SAR China
Karan Madan MD DM
Assistant Professor
Department of Pulmonary, Critical Care and Sleep Medicine
All India Institute of Medical Sciences
New Delhi, India

J Mark Madison MD
Professor
Department of Pulmonary, Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Bharti Mahajan MD
Associate Professor
Department of Pharmacology
Dayanand Medical College and Hospital
Ludhiana, Punjab, India

Rajesh Mahajan MD
Professor
Department of Medicine
Dayanand Medical College and Hospital
Ludhiana, Punjab, India

Richard Mahon MD
Commander
US Navy
Naval Medical Research Center
Bethesda, Maryland, USA

Sara Maio BSc
Project Associate
Pulmonary Environmental Epidemiology Unit
CNR Institute of Clinical Physiology
Pisa, Italy

Pankaj Malhotra MD MAMS
Professor
Department of Internal Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Puneet Malhotra MD DM MRCP FRCR MRCP
Special Consultant
Department of Respiratory and General Medicine
St Helens and Knowsley NHS Trust
USA

Samir Malhotra MD
Professor
Department of Pharmacology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Javaid Ahmad Malik MD DM FCCP
Additional Professor and Head
Department of Pulmonary Medicine
Sher-i-Kashmir Institute of Medical Sciences
Srinagar, Jammu and Kashmir, India

Suruchi Mandrekar MBBS FCP
Chest Research Foundation
Pune, Maharashtra, India

William J Martin II MD
Associate Director
National Institute for Environmental Health Sciences
Director
Office of Translational Research
National Institutes of Health, North Carolina, USA

Praveen N Mathur MBBS
Professor
Department of Pulmonary, Critical Care and Occupational Medicine
Indiana University Medical Center
Indianapolis, Indiana, USA

Venkata Nagarjuna Maturu MD DM
Pulmonologist and Somnologist
Department of Pulmonology and Somnology
Yashoda Hospital
Hyderabad, Telangana, India

Dilip V Maydeo MD
Professor
Department of Tuberculosis and Respiratory Diseases
KJ Somaiya Medical College and Research Center
Mumbai, Maharashtra, India

Paul H Mayo MD FCCP
Director
Medical Intensive Care Unit
Long Island Jewish Medical Center
New Hyde Park, New York, USA
Professor
Clinical Medicine
Albert Einstein College of Medicine
Bronx, New York, USA

D Robert McCaffree MD MSHA Master FCCP
Regents’ Professor
Department of Medicine, Pulmonary Disease and Critical Care Section
University of Oklahoma Health Science Center
Oklahoma, USA

Atul C Mehta MBBS FACP FCCP
Medical Director (Lung Transplantation)
Department of Pulmonary Medicine
Cleveland Clinic
Cleveland, Ohio, USA

Sanjeev Kumar Mehta MD
Senior Consultant
Lilavati Hospital
Arogyaa Nidhi Hospital
Mumbai, Maharashtra, India

BR Mittal MD DRM DNB MNAS FICNM
Professor and Head
Department of Nuclear Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India
Jaydeep Odhwani MD
BJ Medical College
Ahmedabad, Gujarat, India

Paulo J Oliveira MD
Assistant Professor
Department of Medicine
Division of Pulmonary, Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Ngozi Orjioke
University of Southern California
School of Medicine
Los Angeles, California, USA

Kamlesh Pandey MBBS DNB
Chest Research Foundation
Pune, Maharashtra, India

Chandramani Panjaban MD
Head
Department of Respiratory Medicine
Mata Chanan Devi Hospital
Janakpuri, New Delhi, India

Giovanni Passalacqua MD PhD
University of Genoa
Italy

Rubal Patel MD
Tift Regional Medical Center
Tifton, Georgia, USA

Vimal K Patel MD
Department of Pulmonary and Critical Care Medicine
New York Methodist Hospital
Brooklyn, New York, USA

Ruby Pawankar MD PhD
Professor (Rhinology and Allergy)
Department of Otolaryngology
Nippon Medical School
Tokyo, Japan

Abinash Singh Paul MD DM
Consultant Pulmonologist
Department of Pulmonary Medicine
Lifeline Hospital
Dubai, United Arab Emirates

Charles Peng MD
Pulmonary, Critical Care and Sleep Medicine Fellow
Pulmonary Hypertension Center
Icahn School of Medicine at Mount Sinai
Mount Sinai Beth Israel
New York, USA

Vlasis Polychronopoulos MD PhD FCCP
Director
3rd Chest Department
Sismanoglion General Hospital
Athens, Greece

Alladi Mohan MD
Chief
Division of Pulmonary, Critical Care and Sleep Medicine
Professor and Head
Department of Medicine
Sri Venkateswara Institute of Medical Sciences
Tirupati, Andhra Pradesh, India

Prasanta R Mohapatra MD
Professor and Head
Department of Pulmonary Medicine
All India Institute of Medical Sciences
Bhubaneswar, Odisha, India

Sachiko Mori MD
Research Associate
Department of Pediatrics
Nippon Medical School
Tokyo, Japan

Mohammad Eyman Mortada MD FACC
Electrophysiologist
Aurora Cardiovascular Services
Aurora Sinai/St Luke’s Medical Centers
Milwaukee, Wisconsin, USA

Lakshmi Mudambi MD
Associate Professor
Department of Pulmonary and Critical Care Medicine
Baylor College of Medicine
Houston, Texas, USA

Jai B Mullerpattan MD
Associate Consultant
Department of Pulmonary Medicine
PD Hinduja National Hospital and Medical Research Centre
Mumbai, Maharashtra, India

Sagar Naik MD
Department of Pulmonary and Critical Care Medicine
New York Methodist Hospital
Brooklyn, New York, USA

Parmeswaran Nair MD PhD FRCR ERCP C
Professor
Department of Medicine
Division of Respirology
McMaster University
Hamilton, Ontario, Canada

R Narasimhan MD FRC FCP FIAB
Senior Consultant
Department of Respiratory Medicine
Apollo Hospitals
Chennai, Tamil Nadu, India

Manabu Nonaka MD
Research Associate
Department of Pediatrics
Nippon Medical School
Tokyo, Japan
Gaurav Prakash MD DM
Assistant Professor
Bone Marrow Transplantation
Department of Internal Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Rajendra Prasad MD DTCD FAMS FCCP FNICCP
Head
Department of Pulmonary Medicine
Era’s Lucknow Medical College
Lucknow, Uttar Pradesh, India

Mohamed Rahman MD
Cardiovascular Disease Fellow
Aurora Cardiovascular Services
University of Wisconsin School of Medicine
Milwaukee, Wisconsin, USA

Srinivas Rajagopala MD DM
Assistant Professor (Chest Diseases)
Department of Medicine
St John’s Medical College Hospital
Bengaluru, Karnataka, India

Sujeet Rajan MD
Senior Pulmonary Consultant
Bhatia Hospital
Mumbai, Maharashtra, India

Girish Raju MD
Senior Consultant
Department of Medical Oncology
St John’s National Academy of Health Sciences
Bengaluru, Karnataka, India

Arvind Rajwanshi MD FRCPath
Professor and Head
Department of Cytology and Gynecologic Pathology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

VR Pattabhi Raman MD
Consultant Pulmonologist
Kovai Medical Center and Hospital
Coimbatore, Tamil Nadu, India

Padmavathi Ramaswamy MD
Professor
Department of Physiology
Sri Ramachandra Medical College and Research Institute
Sri Ramachandra University
Chennai, Tamil Nadu, India

Sabih Raof MD FCCP
Chair
Department of Radiology
Jamaica Hospital Medical Center and Flushing Hospital
Associate Professor
Department of Medicine
Ross University, Portsmouth, Dominica, USA

Suhail Raof MD FCCP MACP FCCM
Chief
Pulmonary Medicine
Lenox Hill Hospital, New York
Professor
Department of Medicine
Hofstra Northwell School of Medicine
New York, USA

C Ravindran MD DTCD MBA
Professor
Department of Pulmonary Medicine
Principal Medical College
Kozhikode, Kerala, India

Pallab Ray MD
Professor
Department of Medical Microbiology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Zeenat Safdar MD FACP FCCP
Associate Professor
Department of Medicine
Director
Baylor Pulmonary Hypertension Center
Pulmonary and Critical Care Medicine
Baylor College of Medicine, Houston, Texas, USA

Anthony Saleh MD FCCP
Associate Program Director
Pulmonary and Critical Care Medicine Fellowship
New York Methodist Hospital
Brooklyn, New York, USA

Parmeet Saini MD
Pulmonary and Critical Care
New York Methodist Hospital
Brooklyn, New York, USA

Sundeep Salvi MD DNB PhD FCCP
Director
Chest Research Foundation
Pune, Maharashtra, India

Kripesh Ranjan Sarmah MD MNAMS
Assistant Professor
Department of Pulmonary Medicine
Gauhati Medical College and Hospital
Guwahati, Assam, India

Ramamurthy Sakamuri PhD
Postdoctoral Fellow
Department of Pathology
New York University Langone Medical Centre, USA

Nikhil C Sarangdhar MBBS
Assistant Professor
Department of Tuberculosis and Respiratory Diseases
KJ Somaiya Medical College
Mumbai, Maharashtra, India
Textbook of Pulmonary and Critical Care Medicine

Malay Sarkar MD
Associate Professor
Department of Pulmonary Medicine
Indira Gandhi Medical College
Shimla, Himachal Pradesh, India

Pralay Sarkar MD DM MRCP (UK) FCCP
Assistant Professor
Department of Pulmonary and Critical Care Medicine
Baylor College of Medicine
Houston, Texas, USA

Giuseppe Sarno
Pulmonary Environment Epidemiology Unit
Institute of Clinical Physiology
CNR, Pisa, Italy

Gwen S Skloot MD
Associate Professor
Department of Medicine
Icahn School of Medicine
Mount Sinai, New York, USA

L Keith Scott MD FCCM
Associate Professor (Medicine and Pediatrics)
Fellowship Director
Critical Care Medicine
LSU Health Sciences Center
Shreveport, Louisiana, USA

Inderpaul Singh Sehgal MD DM
Assistant Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Tavpritesh Sethi MBBS
Institute of Genomics and Integrated Biology
New Delhi, India

Nusrat Shafiq MD DM
Additional Professor
Department of Pharmacology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Ashok Shah MD
Director Professor
Department of Pulmonary Medicine
Vallabhbhai Patel Chest Institute
University of Delhi
Head
Department of Pulmonary Medicine
Faculty of Medical Sciences
University of Delhi
Delhi, India

Rakesh Shah MD
Department of Radiology
North Shore University Hospital
Manhasset, New York, USA

Walter G Shakespeare MD
Department of Pulmonary and Critical Care Medicine
Baylor College of Medicine
Houston, Texas, USA

PS Shankar MD FRCP FAMS DSc DLitt
Emeritus Professor
Department of Medicine
Rajiv Gandhi University of Health Sciences
Bengaluru, Karnataka, India
Sri Manakula Vinayagar Medical College
Puducherry, India

Bharat Bhushan Sharma MD
Assistant Professor
Department of Pulmonary and Allergy
Sawai Man Singh Medical College
Jaipur, Rajasthan, India
Om P Sharma MD
Former Professor (Medicine)
Keck School of Medicine
Department of Pulmonary and Critical Care Medicine
University of Southern California
Los Angeles, California, USA

Surendra K Sharma MD PhD
JE Bose National Fellow
Professor and Head
Department of Medicine
All India Institute of Medical Sciences
New Delhi, India

FD Sheski MD
Department of Pulmonary, Critical Care and Occupational Medicine
Indiana University Medical Center
Indianapolis, Indiana, USA

Arun S Shet MD
Professor and Head
Department of Medical Oncology
St John National Academy of Health Sciences
Bengaluru, Karnataka, India

Hidenobu Shigemitsu MD FCCP
Professor and Chief
Department of Pulmonary and Critical Care Medicine
Fellowship Program Director
University of Nevada School of Medicine
Las Vegas, Nevada, USA

Marzia Simoni BSc
Project Associate
Pulmonary Environmental Epidemiology Unit
CNR Institute of Clinical Physiology
Pisa, Italy
Contributors

Krishna K Singh
PhD
Senior Technical Team Lead
Siemens Healthcare Diagnostics
Tarrytown, New York, USA

Meenu Singh
MD
Professor and Incharge of Pediatric Pulmonology
Site Director
South Asian Cochrane Network
Coordinator
SAARC Telemedicine Network
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Navneet Singh
MD DM FACP FCCP FICS
Associate Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Virendra Singh
MD
Consultant Pulmonary Physician
Asthma Bhawan
Jaipur, Rajasthan, India

Robert Smith
MD
Interventional Radiologist
Department of Radiology
Jamaica Hospital Medical Center
New York, USA

Rajesh N Solanki
MD FNCCP
Professor and Head
Department of Pulmonary Medicine
BJ Medical College
Ahmedabad, Gujarat, India

Andrés F Sosa
MD
Fellow
Department of Pulmonary, Allergy and Critical Care Medicine
University of Massachusetts Medical School
Worcester, Massachusetts, USA

Padma Srikant
MD
Professor
Department of Microbiology
Sri Ramachandra Medical College and Research Institute
Sri Ramachandra University
Chennai, Tamil Nadu, India

Arjun Srinivasan
MD DM
Consultant Pulmonologist
Department of Pulmonary and Critical Care Medicine
Kovai Medical Center and Hospital Speciality Hospital
Chennai, Tamil Nadu, India

Eleni Stagaki
MD
Consultant
3rd Chest Department
Sismanoglion General Hospital
Athens, Greece

Roxana Sulica
MD
Director
Pulmonary Hypertension Program
Assistant Professor of Medicine
Icahn School of Medicine
Mount Sinai, New York, USA

Balamugesh T
MD DM FCCP
Professor
Department of Pulmonary Medicine
Christian Medical College
Vellore, Tamil Nadu, India

Arunabh Talwar
MD FCCP
Department of Pulmonary, Critical Care and Sleep Medicine
North Shore University Hospital
Professor
Department of Medicine
New Hyde Park, New York, USA

PS Tampi
MD DM
Consultant
Bombay Hospital and Medical Research Centre
Mumbai, Maharashtra, India

Vijayalakshmi Thanasekaran
MD
Consultant
Department of Pulmonary Medicine
Sri Ramachandra Medical College and Research Institute
Sri Ramachandra University
Chennai, Tamil Nadu, India

Mohankumar Thekkinkattil
MD DSC AB DPPR FCCP
Head of Department and Senior Consultant Pulmonologist
Institute of Pulmonary Medicine and Research
Sri Ramakrishna Hospital
Coimbatore, Tamil Nadu, India

FE Udwadia
MD
Consultant Physician
Breach Candy Hospital
Mumbai, Maharashtra, India

Zarir F Udwadia
MD
Consultant Pulmonologist
PD Hinduja National Hospital and Medical Research Centre
Mumbai, Maharashtra, India

Kumar Utsav
MD
BJ Medical College
Ahmedabad, Gujarat, India

Preyas J Vaidya
MD
Institute of Pulmonology, Medical Research and Development
Mumbai, Maharashtra, India

Basil Varkey
MD FRCP FCCP
Professor Emeritus
Department of Medicine
Medical College of Wisconsin
Milwaukee, Wisconsin, USA
Textbook of Pulmonary and Critical Care Medicine

Subhash Varma MD
Professor and Head
Department of Internal Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Jose Joseph Vempilly MD MRCP FCCP
Professor
Department of Clinical Medicine
Division of Pulmonary and Critical Care
UCSF Fresno, USA

Indu Verma PhD
Professor
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Preeti Verma MD
Senior Resident
Department of Obstetrics and Gynecology
Postgraduate Institute of Medical Education and Research
Chandigarh, India

Giovanni Viegi MD
Director of Research
National Research Council (CNR)
Head
Pulmonary Environmental Epidemiology Unit
CNR Institute of Clinical Physiology
Pisa, Italy

VK Vijayan MD PhD DSc FAMS
Advisor to Director General
Indian Council of Medical Research
Bhopal Memorial Hospital and Research Centre
National Institute for Research in Environmental Health
Bhopal, Madhya Pradesh, India

Jeremy A Weingarten MD
Director
Centre for Sleep Medicine
Division of Pulmonary, Critical Care and Sleep Medicine
New York Methodist Hospital
Brooklyn, New York, USA

J Whig MD
Ex-Professor and Head
Department of Chest Diseases
Dayanand Medical College and Hospital
Consultant
Chest Physician
Ludhiana, Punjab, India

Shingo Yamanishi MD
Nippon Medical School
Tokyo, Japan

Yukiko Yokoyama MD
Nippon Medical School
Tokyo, Japan

Marc Zelter MD PhD
Former President
European Respiratory Society
Paris, France
Foreword

The 2nd edition of this *Textbook of Pulmonary and Critical Care Medicine* edited by SK Jindal, Professor Emeritus, Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India, again offers a thoroughly comprehensive and practical reference for the clinicians, who care for patients with respiratory diseases and critical illnesses. It is a timely follow-up to the 1st edition, given the rapid developments and advances in these fields. While this textbook will have special appeal and value to the physicians of the South-Asian continent, I can attest to the fact that it offers an authoritative addition to any practitioner’s library. After receiving my copy of the 1st edition, I found myself frequently turning to the book for a refresher on topics related to the patients under my care.

I also used this textbook to supplement my lectures and seminar materials for the medical students and physicians-in-training. This new edition provides educational value for the educators, pulmonologists, intensivists, thoracic surgeons, pediatricians, postgraduate trainees, and students of medicine. It is especially unique because of the abundance of illustrations, flow charts and tables. Their clarity and, at times, simplicity, make them valuable for the novice and also very useful for the educators. The large number of radiographic and pathologic reproductions are also great teaching tools.

Once again, in this field, Professor SK Jindal has enlisted the collaboration of his colleagues from the Postgraduate Institute of Medical Education and Research in Chandigarh and of leading experts at medical schools in India and in many other countries around the globe. As a result, the textbook offers a unique exposure to special problems seen in different parts of the world. One such problem is tuberculosis (TB). Despite the fact that nearly all the cases can be cured, the WHO considers TB one of the world’s biggest threats. Fifteen chapters in this book are devoted to the topics of TB, ranging from epidemiology and risk factors to the challenges in treating routine, multidrug resistant and surgically correctable disease. This section is a highlight of the book and, based on the recent WHO statistics, education about TB continues to be a high priority in highly endemic areas. For example, of the 9.6 million new cases of TB in 2014, 58% were in Southeast Asia and West Pacific Region, whereas India, Indonesia and China accounted for 23%, 10% and 10% respectively of the total globally, and more than half of the multidrug-resistant TB has occurred in India, China and the Russian Federation. The WHO report 2015 heralds an end-TB strategy to reduce TB deaths by 90% by the year 2030—a target, the readers of this book can help to achieve.

As in the previous edition of the book, there are chapters that are very helpful especially to the practicing physicians, including those who offer a systematic approach to clinical problems including, cough, dyspnea and hemoptysis, the interpretation of plain chest radiographs, the approach to chest CT scans, and the microbiologic approach to respiratory infections. An overview of the antimicrobial and immunosuppressive pharmacologic agents used to treat lung disease, is extremely useful.

What is most impressive about this edition of the book is that it continues to be comprehensive, practical, and updated. There is hardly any topic missing that might be within the scope of this book. The physicians and clinicians around the globe will benefit from Professor SK Jindal’s extensive efforts.

Sidney S Braman MD FCCP
Professor
Department of Medicine
Icahn School of Medicine
New York, USA
Preface to the Second Edition

The 1st edition of this *Textbook of Pulmonary and Critical Care Medicine* received huge success all over the world. This edition, in its two volumes with over 200 authors from over 12 different countries, will serve as a reference book for the students and teachers of medicine and pulmonary sciences. There has been a constant demand for the new edition from various sections for over a year. Therefore, last year, we took the decision to revise the 1st edition.

Tremendous changes have happened in the practice of medicine including those in pulmonary medicine. Rapid advances in technology, introduction of new drugs, devices and diagnostic investigations, have made it mandatory to provide updated information to our readers. Although we have tried our best to include references to the latest publications up to the year 2016, it has not been possible in all the cases because of the longer time period required to publish such a huge text.

Electronic publications and wider availability of information on the internet seems to have relegated the printed books to the background. But textbooks remain irreplaceable. One cannot opt for shortcuts in acquisition of information and knowledge of a subject especially during training or a degree program. Internet browsing tends to promote abbreviated information, which goes against the tenets of a comprehensive program. Undoubtedly, the internet and electronic books offer great help to provide supplementary as well as complementary information. A large majority of students as well as teachers, however, continue to pose greater confidence in the print version, especially in case of the ‘Text’ and ‘Reference’ books.

There has been an enormous increase in the global burden of ‘noncommunicable diseases’ recognized by the UN General Assembly in one of its ‘resolutions’, which has made it incumbent upon all the countries to take effective steps for the control and management of these diseases. Chronic pulmonary diseases constitute one major component of this burden. Factually, the ‘Third-world’ countries suffer from an increasing onslaught of both communicable and noncommunicable diseases. On the other hand, the developed countries too are not immune from infectious diseases. Respiratory system is the most favored target of infectious diseases as much as of noncommunicable diseases.

We have seen a rapid expansion of pulmonary and critical care services all over the world. In India, for example, there was only one postdoctoral fellowship (DM) ‘program in pulmonary and critical care medicine’ in 2011, when the 1st edition of this book was published; there are at least seven such programs now in India. This has resulted in a greater visibility of the specialty as well as an increased demand for the teaching-learning material. Parallelly, there are enormous advancements made in interventional pulmonology and pulmonary critical care as well as the emergence of subspecialties such as ‘sleep medicine, allergy-immunology, environmental and occupational medicine’. The increased concern about ambient and indoor air pollution as a cause of pulmonary diseases, has added an extra burden on pulmonary trainees. We have taken care to incorporate all the important areas of pulmonary medicine that might be within the scope of this book.

This current edition of the book has several new authors and topics in the text. On the other hand, some of the chapters of the earlier edition have been either pruned or deleted altogether. That has been done only to make it more interesting and reader-friendly.

SK Jindal
Preface to the First Edition

It was merely a quarter of a century ago when the specialty of pulmonary medicine was factually recognized as an important division of medicine. Until then, the lung diseases were generally dismissed as tuberculosis, or non-descriptive pneumonias and infections. Most of the nontuberculous lung diseases remained either undiagnosed or unknown. Of course, several stalwarts of the sixties and seventies had clearly identified this deficiency and made efforts to define the pulmonary problems and plan their solutions.

It was in 1989 that the first independent, postdoctoral DM Fellowship Program in Pulmonary Medicine was started at Chandigarh. Subsequently, the program was expanded to include the Critical Care as an essential component of the DM training. In addition, there were several postgraduate MD and/or diploma courses in tuberculosis and chest diseases, and/or respiratory diseases at different medical colleges. Unfortunately, most of the postgraduate programs lacked in their curricula especially for nontuberculous diseases and other systemic disorders. Moreover, the on-hand training in diagnostic and treatment modalities had been highly inadequate in the postgraduate courses. It is rather enigmatic that we still continue to lack the dedicated thoracic surgery courses and texts in various countries.

The increased importance and scope of respiratory and critical care medicine had also necessitated the need to develop the indigenous teaching and training materials including the texts with incorporation of local problems and possible solutions. Undeniably, the science is the same all over the world, but the experiences are different. Excellent text and reference materials on the subject have been available for long, which continue to guide the students, teachers and practicing physicians. In the present literature, quite a few textbooks of pulmonary medicine have been published. Ours is one more attempt in this direction to add to the existing literature on lung diseases available worldwide. This book contains contributions by approximately hundred international esteemed pulmonary medicine consultants and teachers.

There are, however, a few important additions in this present textbook. It is fairly comprehensive with contributions from several internationally eminent authors. It includes the basic principles as well as the recent advances related to different subjects. We have also attempted to incorporate allied clinical sciences relevant to the practice of the pulmonologists. A classical example is the critical care which forms an integral component of pulmonary medicine. It also incorporates tuberculosis, other pulmonary infections, environmental and occupational medicines, sleep disorders and general systemic diseases affecting the respiratory system in one or the other way. Although the critical care is relevant to most of the medical and surgical specialties, the pulmonologists have a more vested interest than that of the other specialists. Assisted respiration, which forms the core of most critical care, lies in the primary domain of pulmonologists.

We have taken care not to forget the need to push forward and meet the goals of excellence in health care. The real test of merit of a book lies in its readership by the students and adoption of its recommendations in clinical practice. Hopefully, the material in the text will benefit a diverse category of people including internists, general physicians, pulmonologists, pediatricians, intensivists, anesthesiologists and others, who need to handle patients with respiratory diseases and critical care.

SK Jindal
I thankfully acknowledge the contribution of my colleagues Dr D Behera, Dr Ashutosh N Aggarwal, Dr Ritesh Agarwal, Dr Navneet Singh, Dr Sahajal Dhooria and Dr Inderpaul Singh Sehgal, for their continued help in editing the manuscript. Unfortunately, we untimely lost our colleague Dr Dheeraj Gupta, while this edition of the textbook was still in its infancy. He had been a great source of encouragement and inspiration, the primary force in bringing out the 1st edition. Aditya, my son, has been only partially successful in bridging the gap.

I am immensely grateful to Dr Sidney S Braman, Dr Richard S Irwin, Dr Suhail Raoof, Dr PS Shankar, Dr Kalaplatha K Guntupally, Dr Ruby Pawankar and others, who have significantly contributed to this textbook. A large number of friends and eminent colleagues from across the globe have unhesitatingly spared their time as authors and coauthors with their valuable chapters and wisdom, for which, I remain obliged to them. I also greatly appreciate the help rendered by my erstwhile secretary, Ms Manju Aggarwal, for the preparation of the manuscript.

My deep appreciation is for Shri Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President), Mr Tarun Duneja (Director–Publishing), Ms Samina Khan (Executive Assistant to Director–Publishing), Mr KK Raman (Production Manager), Mr Ashutosh Srivastava (Assistant Editor), Mr Himanshu Sharma (Proofreader), Ms Yashu Kapoor (Senior Typesetter), Mr Manoj Pahuja (Senior Graphic Designer), and the other staff of M/s Jaypee Brothers Medical Publishers (P) Ltd., New Delhi, India, for taking the challenge of publication of this huge book.
Contents

VOLUME 1

Section 1: History and Development
SK Jindal

1. **History of Respiratory Medicine**
 FE Udwadia
 1800–2000 4; Discovery of Chemotherapy and Antibiotics 6; Respiratory Physiology 6
 Ancient History 8
 SK Jindal
 Medical Practice 8; Lungs: The Site of Breathing 8

2. **Anatomy and Architecture: A Clinical Perspective**
 SK Jindal
 Lung Anatomy and Morphology 12; Architecture of Lung Parenchyma 15; Blood Supply of Lungs 16; Lymphatic Drainage 16; Nerve Supply 17

3. **Lung Development**
 Meenu Singh, Nidhi Anil, Amit Agarwal
 Development of Airway Epithelium 20; Pulmonary Vasculature 21; Beginning of Postnatal Life 22; Regulatory Factors 22

4. **Genomics of Lung Diseases**
 L Keith Scott
 Genomics and Disease 26; Genomic Nomenclature and Investigational Tools 26; Genomic Research 27; Genomics and Acute Lung Injury 27; Genomics and Chronic Obstructive Pulmonary Disease/Asthma 28; Genomics and Interstitial Lung Disease 29; Genomics and Pulmonary Hypertension 30; Biocomplexity and Computational Biology 30; Epigenetics 31

Section 2: Respiratory Physiology
Sunil K Chhabra, Ashutosh N Aggarwal

5. **Applied Respiratory Physics**
 SK Jindal, VK Jindal
 State of Matter 35; Physical Properties of Gases 36; The Gas Laws 38; Gas Solution and Tension 39; Vapors 39; Expression of Gas Volumes and Pressures 40; Flow of Gases 40

6. **Respiratory Function and Mechanics**
 Dheeraj Gupta, Ritesh Agarwal, Ashutosh N Aggarwal
 Ventilation 43; Pulmonary Circulation 48; Diffusion 49; Ventilation-Perfusion (V/Q) Relationships 50; Control of Ventilation 51

7. **Gas and Fluid Exchange in the Lung**
 Marc Zelter
 Gas Exchange 53; Inspired Gas 55; Expired Gas 55; Dead Space and Alveolar Gas 55; Transfer of Gas Across the Alveolar Capillary Membrane 56; Gas Transport to and from the Periphery 57; Transport of CO2 by the Blood 58; Ventilation Perfusion Ratio 59; Gas Exchange and [H+]: 62; Fluid, Solutes and Protein Exchange in the Lung 62; Liquid and Solutes Transport 63; Type of Edema 64; Sequence of Fluid Accumulation in the Lung 66; Effect of Blood Distribution in the Lung 67; Filtration through the Endothelial Barrier 68; Resolution of Alveolar Edema 69; Clinical Implications 70; Measurement of Extravascular Lung Water 70
17. Dyspnea
 J Mark Madison, Richard S Irwin
 Physiology 200; Differential Diagnosis of Dyspnea 200; Disease-Specific Pathophysiology 201; Positional and Nocturnal Dyspnea 202; Evaluating Acute Dyspnea 202; Evaluating Chronic Dyspnea 202; Treatment 203

18. Wheeze and Respiratory Disease
 J Mark Madison, Richard S Irwin
 Physiology of Wheeze 206; History and Physical Examination 206; Pulmonary Function Testing 207; Differential Diagnosis for Wheezing 208; Approach to the Diagnosis of Wheeze 211; Treatment 211

Section 5: Respiratory Diagnosis
 Randep Guleria, SK Jindal

19. History and Physical Examination
 Prahlad R Gupta
 History Taking 217; History of Treatment 220; Physical Examination 220

20. Microbiological Approach to Respiratory Infections
 Pallab Ray
 Upper Respiratory Tract Infections 226; Lower Respiratory Tract Infections 230

21. Systematic Approach to Interpretation of Plain Chest Radiographs
 D Behera
 Posteroanterior View 237; Anteroposterior View 238; Lateral View 238; Apicogram 239; Oblique View 239; Lateral Decubitus Films 239; Expiratory Skiagrams 239; Fluoroscopy 239; Reading a Chest X-ray 240; Abnormal Radiological Findings 241

22. Systematic Approach to Interpretation of CT of the Chest
 Rubal Patel, Rakesh Shah, Sabiha Raoof, Suhail Raoof
 Technical Aspects 267; Normal Components of Pulmonary Parenchyma 268; Normal Lung Components of the Airways 274; Normal Lung Components of Pulmonary Vasculature 278; Tracheobronchial Diseases 280; Parenchymal Diseases 282; Mediastinal Diseases 292; Miscellaneous 295

23. Pulmonary Function Tests
 Ashutosh N Aggarwal
 Spirometry 301; Peak Expiratory Flow 304; Static Lung Volumes 305; Diffusing Capacity of Lungs 307; Exercise Testing 308; Other Tests 310

24. Respiratory Muscle Function
 Randep Guleria
 Respiratory Muscles—Anatomical Consideration 314; Inspiratory Muscles 314; Accessory Inspiratory Muscles 315; Expiratory Muscles 315; History and Examination 316; Electrophysiological Assessment of Respiratory Muscles 320

25. Respiratory Disability and Preoperative Evaluation
 Gyanendra Agrawal, Dheeraj Gupta
 Evaluation of Respiratory Disability 324; Clinical Methods of Evaluating Impairment 324; Disease-Specific Impairment Assessment 326; Disability Evaluation 327; Preoperative Evaluation of Respiratory System 327; Postoperative Pulmonary Complications 328; Preoperative Evaluation 330; Recommended Approach 333; Optimizing the Chance of a Successful Outcome 333

26. Interpretation of Arterial Blood Gases and Acid-base Abnormalities
 Aditya Jindal
 Basic Concepts 338; Overview of Acid-base Pathophysiology in the Body 338; Types of Acid-base Disorders 339; Anion Gap 341; Acid-base Disorders 342; Arterial versus Venous Blood for Blood Gas Analysis 344

27. Nuclear Imaging in Pulmonary Medicine
 BR Mittal, Sunil HV, Kanhaiyalal Agrawal
 Pulmonary Anatomy and Physiology 346; Investigations 346
28. Role of Cytology in Lung Lesions
Nalini Gupta, Arvind Rajwanshi
Cytological Techniques in Respiratory Cytology 359; Inflammatory Diseases of the Lung 363; Fine-needle Aspiration Cytology 366; Epidermal Growth Factor Receptor Mutation Analysis 369; Fluorescence In-situ Hybridization in Respiratory Cytology 371; Metastasis 375

29. Bronchoscopy
R Narasimhan, AR Gayathri
Types of Bronchoscopy 380; Patient Preparation and Anesthesia 381; Diagnostic Bronchoscopy—Accessories 381; Indications for Diagnostic Bronchoscopy 382; Diagnostic Procedures 385; Therapeutic Bronchoscopy 386; Electronavigation Bronchoscopy 387; Safety Factors in Bronchoscopy 387; Complications of Bronchoscopy 388

30. Interventional Bronchoscopy
Praveen N Mathur, FD Sheski
Definition of Interventional Pulmonology 390; Rigid Bronchoscopy 390; Advanced Imaging Bronchoscopy 391; Advanced Biopsy Techniques 392; Endoscopic Palliative Care 396

31. Thoracoscopy
C Ravindran, Jyothy E
Medical Thoracoscopy 413; Surgical Thoracoscopy 418

Section 6: Tuberculosis
D Behera, SK Jindal

32. Epidemiology of Pulmonary Tuberculosis and Trends in Disease Burden
VK Chadha
Agent, Host and Environmental Factors 423; Estimating Tuberculosis Burden 425; Estimating Trends of Tuberculosis Burden 428; Estimated Tuberculosis Burden 429; Progress towards Millennium Development Goals for 2015 431; Prospects for Tuberculosis Control 432

33. Risk Factors for Tuberculosis
Parvaiz A Koul, Nargis K Bali
Risk Factors of Developing Tuberculosis 436; Other Risk Factors 443; Ethnic and Genetic Factors 444

34. Mycobacteria: An Overview
Stuti Agarwal, Romica Latawa, Indu Verma
Route and Spread of Infection 450; Mycobacterial Groups 450; Cell Wall Structure 451; Mycobacterial Genome 451; Mycobacterial Identification 451; Mycobacterial Drug Resistance 452

35. Immunology and Pathogenesis
Madhur Kalyan, Krishna K Singh, Indu Verma
Mycobacterium Tuberculosis Infection and Overview of Immunopathogenesis 454; Immune Responses to Tuberculosis 455

36. Pulmonary Tuberculosis: Clinical Features and Diagnosis
Surender Kashyap, Malay Sarkar
Post-primary Pulmonary Tuberculosis 464; Symptoms and Signs 464; Tuberculosis in the Elderly 466; Miliary Tuberculosis 466; Human Immunodeficiency Virus and Tuberculosis 467; Pleural Effusion 467; Paradoxical Response 467; Physical Examinations 467; Diagnosis of Tuberculosis 467; Extrapulmonary Tuberculosis 474

37. Molecular Diagnosis of Tuberculosis
Ramamurthy Sakamuri, Mamta Kalra, Indu Verma, Suman Laal
Diagnosis of Tuberculosis in Low-income Countries 479; Diagnosis of Tuberculosis in High-income Countries 480; Tuberculosis Diagnosis in Human Immunodeficiency Virus-Positive Individuals 480; Diagnosis of Tuberculosis: Beyond Microscopy 481

38. Management of Tuberculosis
D Behera
Chemotherapy of Tuberculosis 492; Prevention of Drug-Resistant 492; Early Bactericidal Activity 492; Sterilizing Action 492; Suitability for Intermittent Use 494; Site of Tubercular Disease (Pulmonary or Extrapulmonary) 494; Severity of Disease 496; Previously Treated Cases 497; Tuberculosis Treatment in Persons Living with Human Immunodeficiency Virus 498; Rationale for Recommended Treatment Regimens 499; Supervision of Chemotherapy 499
39. **Antitubercular Drugs**
SK Katiyar, S Katiyar

- Isoniazid 502
- Rifampicin 504
- Streptomycin 505
- Pyrazinamide 506
- Ethambutol 507
- Quinolones 508
- Para-aminosalicylic Acid 508
- Ethionamide/Prothionamide 509
- Cycloserine/Terizidone 509
- Capreomycin 509
- Thiacetazone 510
- Group Five Drugs 510
- Clofazamine 510
- Linezolid 510
- Amoxicillin/Clavulanate 511
- Imipenem/Cilastatin 511
- Clarithromycin 511
- High-dose Isoniazid 511
- Bedaquiline 511
- Delamanid 511
- Cotrimoxazole 512

40. **Historical and Nonpharmacological Management of Pulmonary Tuberculosis**
KB Gupta

- History 517
- Ancient Drugs in the Treatment of Tuberculosis 518
- Sanatorium Treatment 519
- Surgery 520
- Immunotherapy 521
- Tuberculosis and Nutrition 523
- Malnutrition and Immunity 523
- Rehabilitation in Tuberculosis 524

41. **Prevention of Tuberculosis**
Rajesh N Solanki, Jaydeep Odhwani, Kumar Utsav

- Primordial Prevention 530
- Primary Prevention 530
- Administrative Measures 530
- Secondary Prevention 534
- Tertiary Prevention 536

42. **Extrapulmonary Tuberculosis**
Ashok K Janmeja, Prasanta R Mohapatra, Deepak Aggarwal

- Diagnosis 538
- Lymph Node Tuberculosis 539
- Pleural Effusion 541
- Treatment 541
- Tuberculous Empyema Thoracis 541
- Bone and Joint Tuberculosis 542
- Tuberculous Arthritis 543
- Central Nervous System Tuberculosis 544
- Abdominal Tuberculosis 546
- Genitourinary Tuberculosis 548
- Skin Tuberculosis 549
- Miliary Tuberculosis 550
- Pericardial Tuberculosis 551
- Hepatic Tuberculosis 553

43. **Multidrug-resistant Tuberculosis**
Surendra K Sharma, Dinkar Bhasin

- Definitions 557
- Basis of Drug-Resistance 557
- Epidemiology 558
- Diagnosis 558
- Disease Management 559
- Treatment 560
- Treatment Outcomes 564
- Multidrug-Resistant Tuberculosis in Special Conditions 565

44. **Treatment of Tuberculosis in Special Situations**
Rajendra Prasad, Nikhil Gupta

- Pharmacokinetics of Antitubercular Drugs 568
- Treatment of Tuberculosis in Pregnancy and Lactation 569
- Treatment of Tuberculosis in Renal Insufficiency 569
- Treatment of Tuberculosis in Liver Disease 571

45. **Tuberculosis and Human Immunodeficiency Virus Infection**
Aditya Jindal, SK Jindal

- Epidemiology 574
- Pathogenesis 575
- Clinical Features 576
- Diagnosis 577
- Management 577

46. **Nontuberculous Mycobacterial Diseases**
PS Shankar, SK Jindal

- Classification 583
- Human Disease 583
- Epidemiology 584
- Clinical Features 584
- Pulmonary Disease 584
- Diagnosis 584
- Treatment 585
- Nontuberculous Manifestations 586

Section 7: Nontuberculous Respiratory Infections
VK Vijayan, SK Jindal

47. **Community-acquired Pneumonia**
Charles Feldman, Ronald Anderson

- Epidemiology 591
- Microbial Etiology of Community-Acquired Pneumonia 592
- Risk Factors for Community-Acquired Pneumonia 593
- Pathogenesis of CAP with Particular Reference to the Pneumococcus 594
- Diagnostic Testing 595
- Prognosis 596
- Treatment of Community-Acquired Pneumonia 599
- Prevention of Infection—Vaccination 600

48. **Pulmonary Fungal Infections**
Arunoloke Chakrabarti

- Epidemiology 608
- Types of Fungi 609
- Fusarium and Scedosporium Infections 612
- Respiratory Infections due to Dimorphic Fungi 613
- Pulmonary Cryptococcosis 613
- Pulmonary Candidiasis 614
- Pneumocystis Respiratory Tract Infection 614
- Pulmonary Mycoses 614
49. Pulmonary Mycetoma
Alladi Mohan, B Vijayalakshmi Devi, Abha Chandra
Pathogenesis 621; Pathology 622; Clinical Presentation 622; Diagnosis 624; Differential Diagnosis 624; Treatment 626; Prognostic Factors 628; Overall Mortality 628

50. Nosocomial Pneumonia
Vishwanath Gella, SK Jindal
Pathogenesis 631; Prevention of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia 632; Diagnosis 633; Risk Stratification of Patients with Ventilator-Associated Pneumonia 635; Treatment 635

51. Viral Pneumonias
Arjun Srinivasan, Ritesh Agarwal
Respiratory Viruses 640; Presenting Features 641; Risk Factors and Features of Severe Disease 646; Respiratory Protection for Healthcare Professionals 647; Management of Critically Ill Patients with H1N1 Influenza 2009 647

52. Pulmonary Manifestations of Human Immunodeficiency Virus Infection
Jai B Mullerpattan, Zarir F Udwadia
Human Immunodeficiency Virus and the Lung 650; Pneumocystis Jirovecii (Carinii) Pneumonia 650; Community-Acquired Pneumonias 652

53. Lung Abscess
C Ravindran, Jyothy E
Definition 657; Epidemiology 657; Classification 657; Etiology 657; Pathogenesis 658; Pathology 658; Clinical Features 659; Complications 662; Treatment 662; Prognosis 663

54. Bronchiectasis and Cystic Fibrosis
David Honeybourne
Bronchiectasis 666; Pathology 666; Physiology 666; Etiology 667; Symptoms and Signs 668; Diagnosis 668; Microbiology 669; Treatment 669; Cystic Fibrosis 671; Epidemiology 671; Diagnosis 671; Clinical Features 672; Infections and Treatment 672

55. Rare Respiratory Infections
Mohankumar Thekkinkattil
Viral Infections 676; Bacterial Infections 677; Rare Forms of Tuberculous Infections 677; Atypical Bacterial Infections 677; Parasitic Infections 678; Rare Fungal Infections 678; Zoonotic Bacterial Pneumonias 679

56. Parasitic Lung Diseases
VK Vijayan
Pulmonary Amoebiasis 681; Pulmonary Lestmizmiasis 681; Pulmonary Malaria 682; Pulmonary Babesiosis 683; Pulmonary Toxoplasmosis 683; Pulmonary Cystic Hydatidosis 684; Pulmonary Alveolar Echinococcosis 685; Pulmonary Schistosomiasis 685; Pulmonary Paragonimiasis 686; Pulmonary Ascariasis 686; Pulmonary Anosylostomiasis 687; Pulmonary Trypanosomiasis 687; Tropical Pulmonary Eosinophilia 688; Pulmonary Dirofilariasis 689; Pulmonary Toxocariasis (Vidael Larva Migrans) 689; Pulmonary Trichinellosis 690

57. Anaerobic Bacterial Infections of Lungs and Pleura
Ashok Shah, Chandramani Panjabi
History 693; Pathophysiology 693; Natural History and Clinical Classification 694; Anaerobes and Upper Respiratory Syndromes 695; Incidence 696; Microbiology 697; Clinical Features 697; Laboratory Diagnosis 698; Radiological Manifestations 700; Treatment 700; Prognosis 701

Section 8: Asthma
SK Jindal, Inderpaul Singh Sehgal

58. Bronchial Asthma: Epidemiology
SK Jindal
Epidemiology 707; Disease Burden 708; Risk Factors of Asthma 709

59. Allergic Rhinitis, Asthma and Comorbidities
Ruby Pawankar, Satoko Kimura, Sachiko Mori, Yukiko Yokoyama, Miyuki Hayashi, Shingo Yamanishi
Inflammation in Allergic Rhinitis 713; Link between Allergic Rhinitis and Asthma 713; Allergic Rhinitis and its Impact on Asthma 715; Other Comorbidities of Allergic Rhinitis 717
60. **Asthma Diagnosis**
Liesel D’silva, Parameswaran Nair
Clinical Diagnosis 720; Tests for Diagnosis and Monitoring 720; Diagnostic Challenges 727

61. **Airway Inflammation and Remodeling**
Ruby Pawankar, Shu Hashimoto, Miyuki Hayashi, Shingo Yamanishi, Manabu Nonaka
Chronic Inflammation in Allergic Rhinitis and Asthma 737; Remodeling in Asthma 741

62. **Control and Management of Stable Asthma**
Sidney S Braman, Gwen S Skloot
Goals of Asthma Treatment 747; Essential Components of Asthma Care 748; Treatment Protocols for Asthma 756; Asthma Control in Developing Countries 757

63. **Acute Asthma Exacerbations**
Aditya Jindal
Triggers Causing Exacerbations 764; Management 766

64. **Immunotherapy and Immunomodulators for Allergic Rhinitis and Asthma**
Ruby Pawankar, Giovanni Passalacqua, Miyuki Hayashi, Shingo Yamanishi, Toru Igarashi
Subcutaneous Immunotherapy 771; The Sublingual Route 773; Safety of Sublingual Immunotherapy 775; Future Developments of Immunotherapy 775; Immunomodulators and Biologics 776

65. **Allergen Desensitization**
Vikram Jaggi
Definition 780; Historical Background 780; Mechanisms of Allergen Immunotherapy 781; Future Directions 784

66. **Patient Education in Asthma**
Bharat Bhushan Sharma, Virendra Singh
Goals of Asthma Education Programs 787; Benefits of Asthma Education Programs 787; Methods and Settings 788; Asthma Education Program Components 788; Patient Education: Problems 789

67. **Pharmacotherapy of Bronchial Asthma**
Nusrat Shaﬁq, Samir Malhotra
Anti-inﬂammatory Agents 791; Bronchodilators 797; Novel Approaches in Clinical Trials 803

68. **Childhood Asthma**
Meenu Singh, Amit Agarwal, Anil Chauhan
Epidemiology 806; Deﬁnition 806; Pathophysiology 807; Diagnosis 808; Guideline-based Management of Asthma 809; Route of Administration 809; Controller Medications 812

69. **Allergic Bronchopulmonary Aspergillosis**
Ritesh Agarwal
Characterization of Aspergillus Species 814; Epidemiology of Allergic Bronchopulmonary Aspergillosis 815; Pathogenesis of Allergic Bronchopulmonary Aspergillosis 816; Pathology of Allergic Bronchopulmonary Aspergillosis 817

Section 9: Chronic Obstructive Pulmonary Disease
Sundeep Salvi, Aditya Jindal

70. **Burden of Chronic Obstructive Pulmonary Disease**
Monica Barne, Sundeep Salvi
Mortality due to Chronic Obstructive Pulmonary Disease 845; Prevalence of Chronic Obstructive Pulmonary Disease 847; Disability Adjusted Life Years due to Chronic Obstructive Pulmonary Disease 853; Economic Burden of Chronic Obstructive Pulmonary Disease 853

71. **Risk Factors for Chronic Obstructive Pulmonary Disease**
Sneha Limaye, Sundeep Salvi
Tobacco Smoking 857; Hookah Smoking and Risk of Chronic Obstructive Pulmonary Disease 858; Environmental Tobacco Smoke and the Risk of Chronic Obstructive Pulmonary Disease 858; Household Air Pollution as a Risk Factor for Chronic Obstructive Pulmonary Disease 859; Mosquito Coil Smoke and Risk of Chronic Obstructive Pulmonary Disease 860; Outdoor Air Pollution and Chronic Obstructive Pulmonary Disease 860; Chronic Obstructive Pulmonary Disease Associated with Occupational Exposures 860; Chronic Obstructive Pulmonary Disease Associated with Pulmonary Tuberculosis 862; Chronic Asthma as a Risk Factor for Chronic Obstructive Pulmonary Disease 862; Genetic Factors Predisposing Development of Chronic Obstructive Pulmonary Disease 863; Facial Wrinkling 863; Socioeconomic Status 863
82. Upper and Central Airway Obstruction
 VR Pattabhi Raman
 Anatomical Considerations 971; Physiological Considerations 971; Clinical Features 971; Diagnosis 972; Acute Upper Airway Obstruction 973; Chronic Upper Airway Obstruction 974; Therapeutic Considerations 980

Section 10: Interstitial Lung Diseases
 Aditya Jindal, Sahajal Dhooria

83. An Introduction to Interstitial Lung Diseases
 Venkata Nagarjuna Maturu, Dheeraj Gupta
 Etiology and Classification 987; Epidemiology 990; Pathology 990; Pathogenesis 991; Diagnostic Approach 992; Treatment 995; Acute Exacerbation of Interstitial Lung Diseases 997; Prognosis 998

84. Pathology of Interstitial Lung Diseases
 Amanjit Bal, Kusum Joshi
 Idiopathic Interstitial Pneumonia 1003; Drug-Induced Interstitial Lung Disease 1011; Connective Tissue Disorders-Associated Interstitial Lung Disease 1012; Hypersensitivity Pneumonitis 1013; Lymphangioleiomyomatosis 1013; Pulmonary Langerhans Cell Histiocytosis 1013

85. Idiopathic Interstitial Pneumonias
 Hidenobu Shigemitsu, Ngozi Orjioke, Carmen Luraschi-Monjagatta
 Epidemiology 1017; Classification 1017; Clinical Features 1017; Histological Features 1018; Treatment 1019

86. Sarcoidosis
 Dheeraj Gupta, Sahajal Dhooria, Om P Sharma
 History 1031; Epidemiology 1031; Risk Factors 1032; Pathogenesis and Immunology 1034; Pathology 1035; Clinical Features 1035; Diagnosis 1041; Sarcoidosis-Tuberculosis Enigma 1043; Treatment 1044; Prognosis and Mortality 1050; Future Directions 1050

87. Pulmonary Eosinophilic Disorders
 Subhash Varma, Aditya Jindal
 Eosinophils 1061; Pulmonary Eosinophilic Disorders 1062; Löffler’s Syndrome 1062; Acute Eosinophilic Pneumonia 1063; Idiopathic Chronic Eosinophilic Pneumonia 1063; Churg-Strauss Syndrome (Eosinophilic Granulomatosis with Polyangiitis) 1064; Hypereosinophilic Syndrome 1066; Approach to Diagnosis and Conclusion 1070

88. Infiltrative and Deposition Diseases
 Prajoy Sarkar, Arunabh Talwar
 Pulmonary Amyloidosis 1074; Lysosomal Storage Disorders 1080

89. Bronchiolitis
 Gyanendra Agrawal, Dheeraj Gupta
 General Features of Bronchiolar Disorders 1097; Clinical Presentations 1097; Practical Approach for Diagnosis of Bronchiolar Disorders 1101; Specific Forms of Bronchiolitis 1101

VOLUME 2

Section 11: Disorders due to Environmental and Climate Factors
 SK Jindal, Ashutosh N Aggarwal

90. Outdoor Air Pollution and Respiratory Health
 Sara Maio, Sandra Baldacci, Marzia Simoni, Fabio Cibella, Sonia Cerrai, Giuseppe Sarno, Stefania La Grutta, Giovanni Viegi
 Outdoor Air Pollution Effects 1109; Prevention 1116

91. Risk Factors for Respiratory Diseases: Indoor Air Pollution
 Marzia Simoni, Sara Maio, Sandra Baldacci, Fabio Cibella, Sonia Cerrai, Giuseppe Sarno, Stefania La Grutta, Giovanni Viegi
 Indoor Pollutants and Related Sources 1119; Indoor Pollutants and Health Effects 1121; Health Effects from Biomass Exposure 1122; Health Effects by Second-Hand Smoke 1124; Other Indoor Exposures 1125; Occupational Exposures 1126; Prevention and Conclusion 1127
92. Climate Change and Lung Disease: With Special Focus on Developing Countries
Kin Bong Hubert Lam, Jon G Ayres

Climate Change: An Introduction 1130; Future Projections of Climate Change 1130; Impact of Climate Change on Health 1131; Climate Change and Lung Disease 1131

93. High-altitude Problems
Ajay Handa

Physical Changes with Altitude 1138; Physiological Adaptation to High Altitude 1138; Specific Altitude Related Illnesses 1139; Effects of High Altitude on Existing Lung Diseases 1140

94. Aviation and Space Travel
Ajay Handa

Air Travel 1143; Space Travel 1145

95. Diving Medicine
Angeline Lazarus, Richard Mahon

Historical Background 1148; Diving Physics and Physiology 1148; Types of Diving 1149; Diving-Related Injuries/Illnesses 1150; Drowning 1150; Decompression Sickness 1150; Barotrauma 1152; Nitrogen Narcosis 1154; Pulmonary Edema 1155; Treatment of Decompression Disorders 1155; Long-Term Effects of Diving 1156

Section 12: Occupational Disorders
PS Shankar, SK Jindal

96. Lung Disease in Coal Workers
Harakh V Dedhia, Daniel E Banks

Epidemiologic Features of Coal-Induced Lung Disease 1166; Clinical Features of Coal Dust Exposure 1166; Management of Coal Mine Dust Lung Disease 1171

97. Silicosis
PS Shankar, SK Jindal

Silica and Silicosis 1175; Occupational Exposure 1175; Problem of Silicosis 1175; Pathogenesis 1176; Forms of Silicosis 1177; Clinical Features 1177; Diagnosis 1177; Prognosis 1180; Treatment 1180; Prevention 1181

98. Berylliosis
PS Shankar

Acute Beryllium Disease 1184; Chronic Beryllium Disease 1184; Pathogenesis 1184; Clinical and Radiological Features 1185; Diagnosis 1185; Treatment 1185; Prognosis 1186; Prevention 1186

99. Metal-induced Lung Disease
Dilip V Maydeo, Nikhil C Sarangdhar

Types 1187; Epidemiology 1187; Pathogenesis 1187; Clinical Presentation and Diagnosis 1188; Approach 1189; Prevention 1190; Treatment 1190

100. Health Risks of Asbestos Fiber Inhalation
Harakh V Dedhia, Daniel E Banks

Asbestos Fibers 1194; Parenchymal Penetration by Fibers 1195; Asbestosis 1196; Asbestos Fibers and the Pleural Space 1198; Pleural Effusions 1199; Diffuse Pleural Thickening: Fibrosis of the Visceral Pleura 1199; Pleural Plaques (Fibrosis of the Parietal Pleura) 1200; Malignant Mesothelioma 1201; Lung Cancer 1204; An Assessment of the Extent of Asbestos-Related Disease in India 1205; Screening the Asbestos Exposed Worker for Lung Cancer 1205

101. Occupational Asthma
PS Shankar, Gajanan S Gaude

Definition 1211; Epidemiology 1212; Agents Causing Occupational Asthma 1212; Pathogenetic Mechanisms of Occupational Asthma 1215; Diagnosis 1216; Management 1218; Prognosis 1219; Prevention 1219

102. Hypersensitivity Pneumonitis
PS Shankar

Definition 1222; Etiology 1222; Pathogenesis 1223; Pathology 1224; Clinical Presentation 1224; Investigations 1225; Diagnosis 1225; Prevention 1226; Management 1226; Prognosis 1227
103. **Toxic Inhalations and Thermal Lung Injuries**
VK Vijayan, N Goel, R Caroli
Determinants of Inhalational Lung Injury 1229; Clinical Presentations of Inhalational Injury 1229; Specific Inhaled Toxins 1232; Systemic Illnesses from Inhaled Toxins 1236; Smoke Inhalation Lung Injury 1238; Approach to a Victim of Inhalation Injury 1239; Management 1239

104. **Drug-induced Respiratory Disease**
William J Martin II
Drugs Associated with Respiratory Toxicity 1243; Diagnosis and Management of Drug-Induced Respiratory Disease 1247

Section 13: Pulmonary Neoplasms
Navneet Singh, D Behera

105. **Epidemiology and Etiopathogenesis of Lung Cancer**
Venkata Nagarjuna Maturu, Navneet Singh
Epidemiology 1253; Risk Factors 1254; Molecular Biology of Lung Cancer 1258; Growth Stimulatory Pathways (Tumor Oncogenes) 1258; Evasion of Apoptosis 1261; Epigenetic Changes in Lung Cancer 1261

106. **Pathology of Lung Tumors**
Amanjit Bal, Ashim Das
Preinvasive Lesions 1266; Evolution of Classification of Lung Cancer 1267; Epithelial Tumors 1268; Neuroendocrine Lesions of the Lung 1272; Staging of Lung Tumors 1273; Molecular Testing for Targeted Therapy in Lung Cancer 1274

107. **Lung Cancer: Clinical Manifestations**
Javaid Ahmad Malik
Local Manifestations 1276; Metastatic Manifestations 1277; Endocrine Syndromes 1282; Neurological Syndromes 1284; Hematological Syndromes 1285; Skeletal 1285; Miscellaneous Syndromes 1286

108. **Diagnosis and Staging of Lung Cancer**
Venkata Nagarjuna Maturu, Ajmal Khan, Navneet Singh
Diagnosis of Lung Cancer 1290; Staging of Nonsmall Cell Lung Cancer 1292; Staging of Small Cell Lung Cancer 1299

109. **Approach to Management of Lung Cancer in India**
Navneet Singh, Venkata Nagarjuna Maturu, D Behera
Diagnostic Work-up 1305; Treatment of Lung Cancer 1305; Palliation 1315

110. **Targeted Agents for Nonsmall Cell Lung Cancer**
Venkata Nagarjuna Maturu, Navneet Singh
Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors 1323; Anaplastic Lymphoma Kinase Inhibitors 1328; Vascular Endothelial Growth Factor Inhibitors 1329

111. **Hematopoietic and Lymphoid Neoplasm of Lungs**
Gaurav Prakash, Pankaj Malhotra
Lymphomas 1335; Lymphomatoid Granulomatosis 1341; Secondary Involvement of Lungs by Other Systemic Hematopoietic and Lymphoid Disorders 1341; Pyothorax-Associated Lymphomas 1342

112. **Solitary Pulmonary Nodule**
Alladi Mohan, B Vijayalakshmi Devi, Abha Chandra
Terminology 1345; Epidemiology 1345; Etiology 1346; Clinical Evaluation 1346; Imaging Studies 1347; Management 1354

Section 14: Mediastinum, Chest Wall and Diaphragm Disorders
SK Jindal, Balamugesh T

113. **Mediastinal Anatomy and Disorders**
Arjun Srinivasan, SK Jindal
Mediastinal Anatomy and Compartments 1359; Mediastinitis 1361; Tumors and Cysts of Mediastinum 1363

114. **Diseases of the Chest Wall**
Balamugesh T
Kyphoscoliosis 1370; Thoracoplasty 1372; Pectus Excavatum 1372; Pectus Carinatum 1373; Ankylosing Spondylitis 1374; Obesity 1374; Flail Chest 1375; Miscellaneous Conditions 1375
115. Diseases of Diaphragm
Balamugesh T
 Signs and Symptoms of Diaphragmatic Disorders 1379; Causes 1379; Diagnosis 1379; Management 1382; Disorders in the Structure of Diaphragm 1382

Section 15: Pulmonary Circulatory Disorders
SK Jindal, Inderpaul Singh Sehgal

116. Diffuse Alveolar Hemorrhage (Pulmonary Vasculitis and Other Causes)
Eleni Stagaki, F Karakontaki, Vlasis Polychronopoulos
 Diffuse Alveolar Hemorrhage Syndromes 1389; Other Causes of Diffuse Alveolar Hemorrhage 1401

117. Pulmonary Hypertension: A Third World Perspective
Lakshmi Mudambi, Zeenat Safdar
 Clinical Features 1405; Physical Examination 1405; Diagnostic Evaluation 1405; Pathophysiology 1407; Management 1408

118. Pulmonary Thromboembolism
Devashayam J Christopher, Richa Gupta
 Epidemiology 1415; Risk Factors 1416; Clinical Features 1417; Diagnosis 1418; Diagnostic Strategies 1423; Management 1424; Specific Treatment 1424; Anticoagulant Therapy 1424; Thrombolytic Therapy 1426; Inferior Vena Caval Filters 1427; Surgical Management 1427

119. Pulmonary Vascular Malformations
Gautam Ahluwalia
 Pathogenesis 1432; Clinical Features 1432; Investigations 1432; Management 1433; Other Pulmonary Vascular Malformations 1433

Section 16: Respiratory Sleep Disorders
Aditya Jindal

120. Approach to Respiratory Sleep Disorders
Ruchi Bansal, Jeremy A Weingarten
 Sleep History 1439; Physical Examination for Respiratory Sleep Disorders 1440; Nocturnal Polysomnography 1441; Out-of-Center Sleep Testing 1442; Sleep Questionnaires 1443; Respiratory Disorders during Sleep 1443

121. Obstructive Sleep Apnea
Macy Mei Sze Lui, Christopher Kim Ming Hui, Mary Sau Man Ip
 Epidemiology and Risk Factors 1447; Pathogenesis of Obstructive Sleep Apnea 1450; Clinical Features 1450; Diagnosis 1451; Morbidities Associated with Obstructive Sleep Apnea 1454; Treatment 1456; Other Treatment Options and New Developments 1458; Obesity Hypoventilation Syndrome 1459

122. Obstructive Sleep Apnea-Hypopnea Syndrome
Harmanjit Singh Hira
 Pathophysiology 1466; Clinical Features 1466; Physical Examination 1467; Treatment 1470; Surgical Treatment 1474; Prognosis 1474; Patient Education 1474; Special Concerns 1475

Section 17: Respiratory Critical Care
Ritesh Agarwal, Aditya Jindal

123. Respiratory Failure
Abinash Singh Paul, Ritesh Agarwal
 Definition 1479; Classification 1479; Mechanisms of Respiratory Failure 1480; Clinical Manifestations of Respiratory Failure 1481; Diagnosis 1481; Treatment 1482

124. Acute Respiratory Distress Syndrome
Jean I Keddissi, D Robert McCaffree
 Definition 1488; Epidemiology 1488; Etiology 1488; Clinical Picture 1489; Pathophysiology 1489; Management 1491; Prognosis and Outcome 1497
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>125.</td>
<td>Sepsis</td>
<td>Sean E Hesselbacher, Walter G Shakespeare, Kalpalatha K Guntupalli</td>
<td>1501</td>
</tr>
<tr>
<td></td>
<td>Definition 1501; Epidemiology, Outcomes and Cost 1503; Pathogenesis 1504; Clinical Features and Evaluation 1505; Prognosis 1507; Management 1507; Goals of Care 1510</td>
<td>1501</td>
<td></td>
</tr>
<tr>
<td>126.</td>
<td>Nonpulmonary Critical Care</td>
<td>Lizianna George, Mark Astiz</td>
<td>1516</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Disease in Critical Care 1516; Hematology in Critical Care 1524; Renal Disease in Critical Care 1529; Endocrine Emergencies in Critical Care 1531; Neurological Disorders in Critical Care 1535</td>
<td>1516</td>
<td></td>
</tr>
<tr>
<td>127.</td>
<td>Critical Care in Nonpulmonary Conditions: Poisoning, Envenomation and Environmental Injuries</td>
<td>Dhrusa Chaudhry, Inderpaul Singh Sehgal</td>
<td>1553</td>
</tr>
<tr>
<td></td>
<td>Poisoning 1553; Envenomation 1564; Environmental Injuries 1567; Drowning and Near Drowning 1568</td>
<td>1553</td>
<td></td>
</tr>
<tr>
<td>128.</td>
<td>Cardiac Arrhythmias</td>
<td>Mohamed Rahman, Mohammad Eyman Mortada</td>
<td>1573</td>
</tr>
<tr>
<td></td>
<td>Recognition of Common Arrhythmias 1573; Premature Ventricular Complexes 1573; Accelerated Idioventricular Rhythm 1574; Wide Complex Tachycardia 1574; Supraventricular Tachycardia 1581; Bradycardia (Heart Rate <60 BPM) 1587</td>
<td>1573</td>
<td></td>
</tr>
<tr>
<td>129.</td>
<td>Cardiogenic Shock and Acute Coronary Syndrome</td>
<td>M Fuad Jan, Suhail Allaqaband</td>
<td>1590</td>
</tr>
<tr>
<td></td>
<td>Cardiogenic Shock 1590; Etiopathogenesis 1590; Clinical Presentation and Diagnosis 1592; Treatment 1593; Acute Coronary Syndrome 1595; Definition and Classification 1595; Management of Acute Coronary Syndrome 1596</td>
<td>1590</td>
<td></td>
</tr>
<tr>
<td>130.</td>
<td>Pulmonary Hypertension in the Intensive Care Unit</td>
<td>Charles Peng, Roxana Sulica</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>Definition and Classification of Pulmonary Hypertension 1613; Right Heart in Health and Disease 1613; Pulmonary Hypertension in the Critically Ill Patient 1614; Right Ventricular Failure in Patients with Pre-existing Pulmonary Arterial Hypertension 1616; Management of the Pulmonary Arterial Hypertension Patient with Decompensated Right Ventricular Failure 1617; Perioperative Management of the Patient with Pulmonary Arterial Hypertension 1619</td>
<td>1613</td>
<td></td>
</tr>
<tr>
<td>131.</td>
<td>Mechanical Ventilation</td>
<td>GC Khilnani, Vijay Hadda</td>
<td>1624</td>
</tr>
<tr>
<td></td>
<td>Indications of Mechanical Ventilation 1624; Basic Aspects of Mechanical Ventilation 1624; Modes of Mechanical Ventilation 1626; Newer Modes of Mechanical Ventilation 1631; Initiating Mechanical Ventilation 1634; Complications of Mechanical Ventilation 1636</td>
<td>1624</td>
<td></td>
</tr>
<tr>
<td>132.</td>
<td>Noninvasive Ventilation</td>
<td>GC Khilnani, Vijay Hadda</td>
<td>1640</td>
</tr>
<tr>
<td></td>
<td>Technical Aspect of Noninvasive Ventilation 1640; Steps to Successful Provision of NIPPV 1643; Clinical Uses of NIPPV: Evidence and Recommendations 1644</td>
<td>1640</td>
<td></td>
</tr>
<tr>
<td>133.</td>
<td>Blood Gas Monitoring</td>
<td>Inderpaul Singh Sehgal, Ritesh Agarwal</td>
<td>1652</td>
</tr>
<tr>
<td></td>
<td>Invasive Blood Gas Monitoring 1652; Noninvasive Blood Gas Monitoring 1654</td>
<td>1652</td>
<td></td>
</tr>
<tr>
<td>134.</td>
<td>Cutaneous Capnography</td>
<td>Preyas J Vaidya, Arvind H Kate, Prashant N Chhajed</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td>Principle 1660; Comparison with Arterial Blood Gas 1660; Development of Cutaneous Carbon Dioxide Tension-Monitoring Devices 1661; Clinical Settings for the Use of Cutaneous Capnography 1662; Other Uses 1665</td>
<td>1660</td>
<td></td>
</tr>
<tr>
<td>135.</td>
<td>Role of Ultrasonography in Critical Care Medicine</td>
<td>Pralay Sarkar, Seth J Koenig, Paul H Mayo</td>
<td>1668</td>
</tr>
<tr>
<td></td>
<td>Training in Critical Care Ultrasonography 1668; Technical Considerations 1669; Thoracic Ultrasonography 1676; Critical Care Echocardiography 1686; Abdominal Ultrasound: Scope in Intensive Care Unit 1695; Ultrasound Assessment of Venous Thromboembolism 1699; Ultrasound Guidance for Procedures 1702</td>
<td>1668</td>
<td></td>
</tr>
<tr>
<td>136.</td>
<td>Interpretation of Chest X-rays in the Intensive Care Unit</td>
<td>Sagar Naik, Sabihra Raoof, Rakesh Shah, Suhail Raoof</td>
<td>1714</td>
</tr>
<tr>
<td></td>
<td>Cardiopulmonary Imaging 1715; Evaluation of Lines, Tubes and Devices 1719; Abnormal Air Collections in the Chest 1721</td>
<td>1714</td>
<td></td>
</tr>
<tr>
<td>137.</td>
<td>Right Heart Catheterization</td>
<td>Parmeet Saini, Vishal K Patel, Anthony Saleh</td>
<td>1726</td>
</tr>
<tr>
<td></td>
<td>Set-up 1726; Insertion 1727; Interpretation 1728; Complications 1730; Clinical Controversy 1734</td>
<td>1726</td>
<td></td>
</tr>
</tbody>
</table>
Section 18: Pleural Disorders

Aditya Jindal, Sahajal Dhooria

144. Pleura: Anatomy and Physiology
 Srinivas Rajagopala
 Anatomy of the Pleura 1811; Pleural Fluid: Normal Volume and Cellular Contents 1812; Physiology and Pathophysiology of Pleural Fluid Turnover 1812; Physiological Changes with a Pleural Effusion 1812; Pleural Manometry 1813; Pleural Ultrasound 1814

145. Approach to Pleural Effusion
 Jose Joseph Vempilly
 Applied Anatomy and Physiology of the Pleural Space 1815; Mechanisms of Pleural Effusion Formation 1816; Clinical Aspects of Pleural Disease 1816; Imaging Studies for Pleural Effusion 1817; Invasive Diagnostic Testing 1822; Approach to Pleural Disease in Acquired Immunodeficiency Syndrome 1823; Noninfectious Causes 1824

146. Tubercular Pleural Effusion
 Pranab Baruwa, Kripesh Ranjan Sarmah
 Pathology and Pathogenesis 1829; Clinical Features 1829; Management 1836; Complication of TB Pleural Effusion 1837

147. Parapneumonic Effusion and Empyema
 Devasahayam J Christopher
 Definitions 1842; Pathogenesis 1842; Epidemiology 1843; Bacteriology 1843; Clinical Features and Diagnosis 1844; Treatment 1847
148. Malignant Pleural Effusions and Pleurodesis
Srinivas Rajagopala
Etiology of Malignant Effusions 1852; Pathogenesis of Metastasis and Effusions 1852; Clinical Presentation 1853; Radiological Findings 1853; Diagnosis 1854; Management 1857; Long-Term Ambulatory Pleural Drainage 1861; Prognosis 1861

149. Pneumothorax
Uma Devraj, George A D’Souza
Definitions 1864; Pathophysiology 1864; Resolution of Pneumothorax 1865; Incidence 1865; Etiology 1865; Clinical Manifestations 1867; Laboratory Investigations and Diagnosis 1868; Recurrence Rates 1869; Treatment 1869; Catamenial Pneumothorax 1873; Iatrogenic Pneumothorax 1874; Traumatic (Noniatrogenic) Pneumothorax 1874; Tension Pneumothorax 1874

150. Malignant Pleural Mesothelioma
Arun S Shet, Girish Raju, George A D’Souza
Epidemiology 1877; Pathogenesis 1878; Clinical Presentation 1880; Diagnostic Approach 1882; Treatment 1883

Section 19: Pulmonary Manifestations of Systemic Diseases
SK Jindal

151. Pulmonary Involvement in Connective Tissue Diseases
Om P Sharma, Aditya Jindal
Rheumatoid Arthritis 1891; Systemic Sclerosis 1896; Sjögren’s Syndrome 1898; Systemic Lupus Erythematosus 1899; Dermatomyositis and Polymyositis 1901; Ankylosing Spondylitis 1902; Mixed Connective Tissue Disease 1904

152. Cardiovascular and Neuromuscular Diseases
Ajmal Khan, SK Jindal
Cardiovascular Diseases 1908; Neuromuscular Diseases 1910

153. Endocrinal, Gastrointestinal, Hepatic and Renal Disorders
Ajmal Khan, SK Jindal
Endocrine Disorders 1917; Hepatic Disorders 1921; Renal Diseases 1924

154. Pulmonary Involvement in Tropical Diseases
Sanjay Jain, SK Jindal
Malaria 1929; Typhoid 1931; Leptospirosis 1932; Dengue 1932; Amebiasis 1933

155. Pulmonary Diseases in Pregnancy
Lakhbir Kaur Dhalwal, Preeti Verma, Umesh N Jindal
Pulmonary Physiological Changes during Pregnancy 1936

156. Rare Lung Diseases
Sanjeev Kumar Mehta, PS Shankar
Pulmonary Alveolar Phospholipoproteinosis 1953; Etiology and Pathophysiology 1953; Clinical Classification 1953; Pathology 1954; Symptoms and Signs 1954; Radiology 1954; Laboratory Tests 1955; Treatment 1955; Progress and Complications 1955; Pulmonary Calcification and Ossification Syndromes 1955; Pathophysiology 1955; Pulmonary Alveolar Microlithiasis 1956; Etiopathology 1956; Clinical Features 1956; Investigations 1957; Treatment 1957

Section 20: Perspectives of Respiratory Care
SK Jindal

157. Ethics in Respiratory Care
Basil Varkey
Scope of Ethics 1961; Current Status of Knowledge and Skills 1961; Ethics Education 1961; Ethics and Morality 1962; The Four-Principles Approach to Medical Ethics (Principlism) 1962; Ethics in End-of-Life Care 1965; Communication and Decision-Making in End-of-Life Care 1966; Culturally Sensitive Care 1967; A New Covenant and a Conceptual Model for Patient Care 1968
158. **End-of-life Care**
Jeba S Jenifer, SK Jindal

159. **Health Economics of Pulmonary Care**
Sudheendra Ghosh C
Perspective of the Analysis (Who Pays and Who Gains) 1982; Types of Costs Involved 1983; Types of Analysis 1983; Basics of Cost-Effectiveness Analysis 1983; Estimating Cost-Effectiveness in Chronic Obstructive Pulmonary Disease 1984; Cost-Effectiveness of Interventional Pulmonary Procedure 1984; Quality of Life and Outcome Assessment Measures 1985; Health-Related Quality of Life Instrument 1985; Quality of Life in Chronic Obstructive Pulmonary Disease and Interstitial Lung Disease 1985

Section 21: Surgical Aspects of Respiratory Disease
SK Jindal

160. **Surgery for Tuberculosis and Infective Lung Conditions**
RK Dewan
Historical Aspects 1991; Types of Surgical Procedures Performed for Tuberculosis 1992; Postoperative Management 1995; Outcome of Surgery 1995

161. **Thoracic Trauma**
Rajinder Singh Dhaliwal, Bhalinder Dhaliwal
Pathophysiology 1997; Effects on Lungs and Chest Wall 1998; Classification 1998; Blunt Chest Trauma 1998; Penetrating Chest Injuries 2001; Management of Thoracic Trauma 2003

162. **Imaging for Chest Trauma**
Sabhi Raoof, Joseph Friedman, Kenneth R Fretwell, Robert Smith
Lung Parenchymal and Airways Injuries 2007; Other Thoracic Injuries 2009; Blunt Trauma of the Chest Wall 2012; Thoracic Vascular Trauma 2014

163. **Lung Transplantation**
Sachin Kumar, Ritesh Agarwal
History of Lung Transplantation 2017; General Indications 2017; Selection Criteria for Individual End-Stage Lung Diseases 2018; Contraindications 2019; Waiting List and Organ Allocation 2019; Immunosuppressive Treatment 2021; Future of Lung Transplantation 2025; Lung Transplantation in India 2026

Index
2031
INTRODUCTION

Oxygen is essential for continuation of life. It is required by each human cell for its survival. It is abundantly present in atmosphere and maintains a remarkably constant concentration of 20.9% in ambient air. Oxygen is taken up by lungs through the act of inspiration and transported to cells via blood. At the cellular level, oxygen is utilized for production of energy. In this process, carbon dioxide is released and transported back via blood to lungs from where it is expired out into atmosphere. The act of exchange of oxygen and carbon dioxide is called respiration. For effective respiration, air must be drawn through the airways and distributed among approximately 400,000,000 alveolar compartments within the lung parenchyma. Although respiration is normally described as uptake of oxygen and release of carbon dioxide by the lungs, it is essentially happening at the level of lungs (“external” respiration), as well as the tissues (“internal” respiration).

The respiratory system is made up of a gas exchanging organ (the lungs) and a pump that ventilates the lungs. The pump consists of the chest wall and the respiratory muscles, which increase and decrease the size of the thoracic cavity; the areas in the brain that control the muscles; and the tracts and nerves that connect the brain to the muscles. At rest, a normal human breathes 12–15 times a minute. About 500 mL of air per breath, or 6–8 L/min, is inspired and expired. This air mixes with the gas in the alveoli, and, by simple diffusion, O₂ enters the blood in the pulmonary capillaries while CO₂ enters the alveoli. In this manner, 250 mL of O₂ enters the body per minute and 200 mL of CO₂ is excreted.

Gas exchange by human lungs is achieved with the help of four processes (Fig. 1), which are also variably interdependent:

1. Ventilation: To and fro movement between the atmosphere and the gas exchanging units of lung.
2. Circulation: Supply and distribution of blood through the pulmonary capillaries.
3. Diffusion: The movement of O₂ and CO₂ across the air-blood barrier between alveoli and pulmonary capillaries.
4. Ventilation-perfusion relationships.

VENTILATION

Ventilation is the process of bulk movement of air from atmosphere, through the conducting airways to the terminal respiratory gas exchange units. This movement of air is made possible by force which is generated by effort of respiratory muscles (or a mechanical ventilator if the patient is being ventilated). It is also dependent on mechanical properties of the conducting airways and the lung parenchyma (i.e. the breathing units). The mechanical properties are referred to as “static” at zero (or no airflow) flow and constant volume, and “dynamic” if there is air flow.

The amount of air that moves in and out of the lungs with each inspiration and expiration respectively is called
the tidal volume. The air inspired over and above the tidal volume with a maximal inspiratory effort is the inspiratory reserve volume, and the volume exhaled actively after passive expiration is the expiratory reserve volume; the air left in the lungs after a maximal expiratory effort is the residual volume. The respiratory dead space is the space in the conducting zone of the airways occupied by gas that is not involved in gas exchange. The vital capacity, the largest amount of air that can be exhaled after a maximal inspiratory effort, is a frequently measured index of pulmonary function. The fraction of the vital capacity exhaled during the first-second of a forced expiration is the FEV$_1$. The maximal voluntary ventilation is the largest volume of gas that can be moved in to and out of the lungs in 1 minute by voluntary effort. There are several factors on which the aforementioned lung volume and the airflow depend: Compliance (a volume term), which is a measure of the elastic properties of lung, is an important determinant. Other elements include resistance (a flow term) and inertance (an acceleration term).

Inertance

Since the respired gases, the lungs and the chest wall all have appreciable mass and therefore inertia, they offer an impedance to change in the direction of gas flow. This component called inertance, is extremely difficult to measure, but offers impedance that increases with frequency. Hence, inertial pressure is essentially negligible for most clinical purposes and the gas flow depends primarily on the compliance and resistance characteristics of the lung parenchyma except in situations of increased respiratory frequencies like high-frequency ventilation.

Compliance

Pulmonary compliance (or distensibility) is defined as the change in the volume of lung per unit change in distending pressure, which in case of lung is the transpulmonary pressure [defined as the pressure gradient between the alveolar (P_A) and the pleural pressures (P_{pl})]. Elastance is the reciprocal of compliance. Compliance is equal to exhaled tidal volume (or a change in lung volume) divided by alveolar pressure minus the pleural pressure (or a change in the transpulmonary pressure).

$$C = \Delta V_L / \Delta (P_A - P_{pl})$$

where $C =$ lung compliance, $\Delta V_L =$ change in lung volume, $\Delta (P_A - P_{pl}) =$ change in transpulmonary pressure.

The interaction between recoil of the lungs and recoil of the chest can be demonstrated using body plethysmography. The technique is described in detail in the chapter on pulmonary function testing.

The lung pressure volume relationship is a curvilinear graph. The elastic recoil pressure of lung always tends to collapse the lung even at the residual volume. Theoretically therefore, if removed from the thoracic cage, the lungs collapse to almost an airless state.

Hysteresis

The pressure-volume curve is also slightly greater when measured during deflation than when measured during inflation, a property called hysteresis (Fig. 2). Hysteresis is affected by the elasticity of lung parenchyma and the surface tension of alveolar spaces. In fact, hysteresis is a universal property of all elastic materials. Pulmonary compliance is normally measured in the pressure range where the relaxation pressure curve is steepest. However, compliance depends on lung volume with highest compliance at residual lung volume and low compliance at high lung volumes.

Recruitment

This is a unique phenomenon observed in lung due to closure of some small airways at lower lung volumes. As the transpulmonary pressure rises, the closed airways open sequentially. Thus, the recruitment of additional lung units in the initial phase of inspiration starting from lower lung volumes also contributes to hysteresis. Two other important factors affecting lung compliance are the surface tension and the physical nature of lung tissues.

Surface tension exerted by air fluid interface is reduced by surfactant—a surface active compound of phospholipids produced by type II alveolar cells. Surface tension is further
lowered at lower lung volumes thereby increasing the compliance and decreasing the force required during the next inflation. Also, by the Laplace law (Pressure = 2 × surface tension/radius), as the diameter of the alveoli is decreased, the pressure would increase and this would create an unstable system; this is also prevented by surfactant, which decreases surface tension with decreasing radii of alveoli, and allows gas to flow from the larger to the smaller alveolus and stability is maintained. This phenomenon is also mandatory for the maintenance of stability of alveoli at lower lung volumes.

Physical elastic properties of lung tissue per se, are due to the presence of elastic fibers in the pulmonary interstitium. Expansion in lungs is probably more due to unfolding and geometric rearrangement of elastic fibers rather than the actual lengthening. Aging alters the elastin and collagen fibers in lungs, thus increasing the compliance. Compliance is also increased in emphysema due to loss of elastic fibers of alveolar walls. It is reduced wherever there is stiffness and thickening of alveolar septae by processes such as fibrosis.

Elastic Properties of Chest Wall and Lung-chest Wall Interactions

The resting volume of thoracic cage is approximately equal to 70% of total lung capacity (TLC). It implies that if thoracic cage is opened and support of lung withdrawn, it expands from functional residual capacity (FRC) (the resting position of respiratory system at which the inward elastic recoil of the lungs is exactly balanced by the outward recoil of thoracic cage) to a volume of about 70% of TLC. At volumes less than 70% (including FRC), thoracic cage has a tendency to expand and elastic recoil pressure is opposite to that of lungs, and is directed outward.

The total compliance of the respiratory system is analogous to the electrical capacitance with the compliance of the lung and the thoracic wall arranged in series. Thus, the reciprocal of total compliance is the sum of reciprocals of the individual compliances, i.e.

\[
\frac{1}{\text{total compliance}} = \frac{1}{\text{lung compliance}} + \frac{1}{\text{chest wall compliance}}
\]

Instead of compliance, we may consider its reciprocal, elastance and the relationship is much simpler:

\[
\text{Total respiratory system elastance} = \text{lung elastance} + \text{chest wall elastance}.
\]

Resistance

Resistance is the opposition to motion and in the respiratory system opposition to the flow of gas. In the lung, resistance to air flow is of two types: tissue and airway. The former, also known as elastic resistance (resistance from tissues or tissue resistance), occurs when no gas is flowing, and is due to elastic resistance of lung tissue and chest wall and the resistance imparted from surface forces at the alveolar gas/liquid interface. Approximately, 80% of the pulmonary resistance is due to airway resistance or nonelastic resistance.

Resistance to airflow is computed by the simultaneous measurements of airflow, and the driving pressure that is required to achieve the flow, i.e.

\[
\text{Resistance} = \frac{\text{Driving pressure}}{\text{Flow}} = \frac{P}{V}
\]

Most nonelastic resistance is provided by frictional resistance to airflow and thoracic tissue deformation, with small contributions from inertia of gas and tissue and compression of intrathoracic gas.

Airway Morphology

Airways are tubular structures designed to carry air to alveolocapillary membrane for gas exchange. The tracheobronchial tree consists of several branches, which arise by dichotomous divisions of the parent bronchus. Airway divisions from trachea to the alveoli are not uniform, may vary between 10 and 25 in different areas—divisions being less near the hilar regions and more at the bases. The diameter, angulation and course of the bronchial divisions are also different in different lung zones. For example, the air passages to alveoli at the lung bases are straighter and have larger cross-sectional areas. This asymmetric pattern of branching is referred to as “irregular dichotomy”. It has a bearing on the distribution of ventilation and deposition of inhaled material.

Airways are classified into two types—conducting and respiratory airways. The conducting or central airways do not participate in gas exchange. They are larger than 2 mm in diameter, have cartilaginous support, are lined by ciliated columnar epithelium and are supplied by systemic bronchial circulation. They are also able to change their diameter in response to several neurohormonal and chemical stimuli due to the presence of smooth muscles in their walls and vagal innervation. The respiratory bronchioles or terminal airways are situated beyond the conducting airways. They are less than 2 mm in diameter, lack cartilaginous support, are lined by cuboidal epithelium and supplied by pulmonary circulation. Due to their structural properties, they are susceptible to compression and closure in response to changes in intrapulmonary pressures.

The geometric features of airway divisions have a direct relationship with the partitioning of resistance and hence distribution of ventilation. There is a progressive narrowing and shortening of airways as the division progresses from trachea to the peripheral airways. Despite reduction in the diameter of daughter airways, the total cross-sectional area increases tremendously as we go peripherally. This is because the total number of airways increases geometrically with each division and the diameter of each daughter airway is more than half of the parent airway. This results in almost 2,000 fold increase in total cross-sectional area from trachea to peripheral airways.
Physical Principle of Gas Flow and Resistance

The geometric features described above are important in the distribution of resistance within the lung. The air flow decreases progressively as air moves down the bronchial tree to the peripheral zones. In the terminal bronchioles, flow is reduced to almost zero. It is the Brownian motion of the molecules, which facilitates diffusion across the alveolocapillary membrane. As the flow velocity decreases, the driving pressure and resistance also fall. It has been calculated that 80% of total measurable resistance at mouth is contributed by central or conducting airways.

The precise relationship between pressure difference and flow rate depends on the nature of flow, which may be laminar, turbulent or a mixture of the two. With laminar flow, gas flows along a straight unbranched tube as a series of concentric cylinders that slide over one another, with the peripheral cylinder stationary and the central cylinder moving fastest, the advancing cone forming a parabola. The advancing cone front means that some gas will reach the end of the tube despite the volume of gas entering the tube being less than the volume of the tube. This has relevance in patients being ventilated using high frequency ventilation where there is significant alveolar ventilation despite the tidal volume being less than or equal to the anatomical dead space.

In a straight unbranched tube, the Hagen-Poiseuille equation allows gas flow to be quantified: Flow rate = ΔP × π × (radius)^4/8 × length × viscosity, where ΔP is the pressure gradient and equals the product of flow rate and resistance: Thus, resistance = 8 × length × viscosity/π × (radius)^4.

In this equation, the fourth power of the radius explains the critical importance of narrowing of air passages. With constant tube dimensions, viscosity is the only property of gas that is relevant under the conditions of laminar flow. Helium has a lower density, but a viscosity close to that of air, and thus will not improve gas flow if the flow is laminar.

On the other hand, turbulent flow occurs when gas flows at high rates through unbranched or irregular tubes, resulting in formation of eddy currents. In contrast to laminar flow, it has a square front and the volume of gas entering the tube is equal to the volume of the tube, the so-called bulk flow. The relationship is different from the laminar flow in that the driving pressure is proportional to the square of gas flow rate and the density of gas, but independent of its viscosity and the required driving pressure is inversely proportional to the fifth power of the radius of the tubing (Fanning’s equation).

The change in flow from laminar to turbulent characteristics is determined by a dimensionless number, the Reynolds’ number (N_Re), which is N_Re = density × velocity × diameter/viscosity. The property of gas that affects N_Re is the ratio of density to viscosity. Flow is laminar with N_Re less than 2,000, and changes from laminar to turbulent when the N_Re exceeds 4,000. Between N_Re of 2,000 and 4,000, both types of flow coexist. There is also a critical length of tubing before the parabolic pattern of laminar flow is established, and thus for gases with low N_Re not only will resistance be less during turbulent flow, but also laminar flow will become established more quickly after narrowed airways. In principle, turbulence occurs only in larger airways and not in smaller airways because of the large cross-sectional area, the small diameter and the slow velocity of the small airways. Heliox has a density/viscosity ratio of 0.31 compared to one for oxygen. It has a lower N_Re and higher potential for laminar flow, explaining its usefulness in patients with large airway diseases.

Total and Alveolar Ventilation

The total amount of air inhaled with each inspiration gets distributed in the lungs depending upon the regional resistance and compliance of different lung units. Ventilatory requirements for adequate supply of oxygen and removal of carbon dioxide depend on metabolic demands of body. The resting ventilatory requirements are small and are met with minimal expenditure of energy. A normal individual can maintain gas exchange with a ventilation of about 80 mL/kg/minute, which is about one-tenth of the maximum ventilatory capacity. Therefore, there is a vast reserve in ventilatory capacity and problems of gas exchange would not occur, if all the inspired volume is available to the gas exchange units. Due to cyclical nature of ventilation, a significant proportion of inspired gas never reaches the alveoli—a volume known as the dead space volume. So, the total ventilation is contributed by the dead space ventilation (V_D) and alveolar ventilation (V_A), i.e. the air that reaches the alveoli to take part in gas exchange. The dead space ventilation in mL is roughly around the individual’s body weight in pounds.

The volume of conducting airways, which constitute the anatomical dead space, is relatively fixed, i.e. about one-third of the resting tidal ventilation. Its relative proportion to the total ventilation decreases as the total ventilation increases, for example on exercise. On the other hand, a decrease in tidal volume and increase in respiratory rate (e.g. rapid shallow breathing) markedly increases the proportion of dead space ventilation thereby affecting gas exchange.

Dead space is also increased when there is presence of lung units, which are adequately perfused, but not ventilated, the so-called physiological dead space. It is important to distinguish between the anatomical dead space (respiratory system volume exclusive of alveoli) and the physiologic dead space (volume of gas in the alveoli not equilibrating with blood, i.e. wasted ventilation). As will be discussed subsequently in this chapter, ventilation has to be matched by the perfusion of blood in the alveolar capillaries for adequate gas exchange to occur. Ventilation and perfusion are not homogeneously distributed throughout the lung, and areas which receive more ventilation relative to perfusion result in wasted ventilation and thus add to “dead space” ventilation. The sum of the dead space ventilation by these two mechanisms constitutes “total dead space” and is given the formula:

\[\frac{V_D}{V_{\text{es}}} = 1 - P_{\text{E}}CO_2/P_{\text{A}}CO_2 \]

where
DISTRIBUTION OF VENTILATION

Alveolar ventilation is distributed throughout the lungs. With each inspiration, around 500 mL of air is distributed to around 300 million alveoli such that each alveolus receives an appropriate share of the inspired gas. This fine distribution of air is essentially a function of the “time constants” of the regional lung units. Time constant is the product of regional compliance and resistance and thus is also called the RC time constant. The relative distribution of ventilation between two neighboring lung units can be understood better with the two compartment lung model. In health, the resistance and compliance of two adjacent units of lung are essentially equal and thus their RC time constant is normal with the normal distribution of ventilation. However in a diseased lung, different portions of lung may have abnormal time constants as a result of either the diseased airway lumen (increased resistance) or because of stiffness of alveolar walls (increased compliance) or both. Thus, ventilation will be maldistributed in a lung unit with abnormal RC time constant, with more ventilation to areas with relatively normal time constant than other areas. A lung unit with a large time constant (i.e. greater resistance and compliance) does not completely fill by the end of inspiration and empties slowly during expiration. In contrast, a lung unit with a small time constant (i.e. smaller resistance and compliance) fills and empties rapidly.

When a lung unit with a large-time constant is located adjacent to a lung unit with a small-time constant, the unit with the large-time constant may withdraw gas from the adjacent lung unit with a short-time constant rather than fresh inspired gas. This “to and fro” behavior is known as pendelluft, and it can occur in abnormal lungs. In addition, a lung unit with a small-time constant may receive a higher proportion of dead space gas, which reduces its alveolar ventilation. This effect is prominent in chronic obstructive lung disease, in which compliant lung units with extremely large-time constants behave essentially as dead space. The higher the respiratory rate, the greater is the discrepancy in filling and emptying between these two kinds of units, and thus greater the inhomogeneity of ventilation.

Another reason for uneven ventilation of small lung units is a gradient of gas concentration along the small airways, a condition called stratified inhomogeneity. Inspired gas reaches near the region of the terminal or respiratory bronchioles by convective flow, but gas flow over the rest of the distance to the alveoli is accomplished primarily by molecular diffusion within the airways. When airway calibers are altered, as in emphysema, the process of gas diffusion may be incomplete for each breath. Thus, alveoli more distal to conducting airways are less well ventilated than proximal alveoli.

Several mechanisms tend to preserve the uniform distribution of ventilation in the lung. One of these mechanisms is the pendelluft phenomenon described earlier. Another mechanism is gas exchange through collateral air channels between adjacent lung units. Collateral ventilation can occur between alveolo-alveolar pores of Kohn, bronchio-alveolar canals of Lambert, and bronchiolo-bronchiolar foramina of Martin. Another factor that tends to improve the uniformity of ventilation is the interdependence of peripheral lung units, which stems from the observation that contiguous lung units are attached integrally to each other by the connective tissue framework of the lung parenchyma. The behavior of one unit must therefore influence the behavior of its neighbors. This framework serves to offset the tendency for regional differences in compliance to make lung units larger or smaller than they should be for optimal performance.

ROLE OF GRAVITY

Gravity also plays some role in the distribution of ventilation. In the upright position, ventilation per unit lung volume is greater at base of lung than at apex. This happens because at the start of inspiration, intrapleural pressure is less negative at base than at apex, and since the intrapulmonary-intrapleural pressure difference is less than at apex, the lung is less expanded. Conversely, at apex, the lung is more expanded, i.e. the percentage of maximum lung volume is greater. Because of stiffness of lung, the increase in lung volume per unit increase in pressure is smaller when the lung is initially more expanded, and ventilation is consequently greater at the base.

The ventilation differences tend to disappear in supine position, and the weight of lung makes the intrapleural pressure lower at the base in the upright position. However, the inequalities of ventilation and blood flow in humans have been found to persist to a remarkable degree in the weightlessness of space. Therefore, other as yet unknown factors apparently also play a role in producing the inequalities. It should also be noted that at very low lung volumes, such as those after forced expiration, intrapleural pressure at lung bases can actually exceed atmospheric pressure in the airways, and the small airways such as respiratory bronchioles collapse (airway closure). In older people and in those with chronic lung disease, some of the elastic recoil is lost, with a resulting decrease in intrapleural pressure. Consequently, airway closure may occur at the bases of lungs in the upright position without forced expiration, at volumes as high as the functional residual capacity.

\[
\begin{align*}
V_D & = \text{total dead space} \\
V_E & = \text{minute ventilation} \\
P_aCO_2 & = \text{partial pressure of carbon dioxide in the expired air} \\
P_aCO_2 & = \text{partial pressure of carbon dioxide in the alveolar air (which in practice is measured by the arterial PCO}_2\text{)}
\end{align*}
\]

The relationship of total and alveolar ventilation was first described by Christian Bohr and is also known as “Bohr dead space”.

Gravity also plays some role in the distribution of ventilation.
PULMONARY CIRCULATION

The circulation of the entire cardiac output through lungs is ideally suited for rapid gas exchange. The pulmonary vascular bed resembles systemic circulation, except that the walls of pulmonary artery and its large branches are about 30% as thick as the wall of the aorta, and the small arterioles, unlike the systemic arterioles, have relatively little muscle in their walls. There is also some smooth muscle in the walls of the postcapillary venules. Also, the pulmonary capillaries are large with multiple anastomoses, so that each alveolus sits in a capillary basket. Blood from the right side of the heart flows through an intricate network of pulmonary capillaries around the alveoli.

After getting oxygenated, blood drains back into the left atrium through four pulmonary veins. The pulmonary bed is characteristically a low-pressure circuit. There is a dense network of capillaries around each alveolus. Rough estimates put the total number of capillaries at about six billion or two thousand capillaries per alveolus. Not all the capillaries are perfused under resting conditions. An increased blood flow due to an increased cardiac output (as much as 25 liters per minute during exercise in contrast to 5–6 liters during resting conditions) can be accommodated easily in pulmonary circulation without an increase in the pulmonary arterial pressure. This is made possible as a result of two major mechanisms that include recruitment, which is the opening of previously unperfused pulmonary capillaries in the upper lung zones, and distension in the entire pulmonary vasculature due to increased transmural pressure gradient. The best example of the ability of pulmonary vasculature to adapt to increased blood flow is following pneumonectomy, when the remaining lung will normally take the entire resting pulmonary blood flow without an increase in pulmonary arterial pressure.

Distribution of Perfusion

The distribution of pulmonary blood flow is nonuniform from apex to base. In upright position, upper portions of the lungs are well above the level of heart, and bases are at or below it. Consequently, there is a relatively marked pressure gradient in the pulmonary arteries from the top to the bottom of the lungs, because of effect of gravity, and a resulting linear increase in pulmonary blood flow from the apices to the bases of the lungs. The following three concepts about pressure in the pulmonary vessels are important to understanding the behavior of the pulmonary circulation.

Intravascular Pressure

This is the blood pressure inside the lumen of the vessel relative to the atmospheric pressure. The pulmonary arterial pressure (P_a) and pulmonary venous pressure (P_v) can be measured directly by placing catheters into the blood stream at specific points, and in clinical practice, capillary pressure can be estimated by wedging a catheter into a lobar branch of pulmonary artery. The “wedge” pressure measured under the conditions of “no flow” reflects the pressure downstream of the next freely communicating channels, that is, pulmonary capillaries or small pulmonary venules.

Transmural Pressure

This is the difference between the pressure inside a vessel and the pressure in the tissue around it. For example, the pressure around the pulmonary arteries and veins is approximately equal to the intrapleural pressure. The pressure around the capillaries is approximately the intra-alveolar pressure (P_A). It is this difference in transmural pressure that leads to the different behavior of alveolar and extra-alveolar vessels under conditions such as lung inflation. At the capillary level, the transmural pressure is also an important determinant of the rate of transudation of fluid across the capillary bed.

Pulmonary Driving Pressure

This is the difference in intravascular pressure between one point in the circulation and another point downstream, and is the pressure involved in overcoming the frictional resistance that impedes blood flow between two points. The driving pressure for the pulmonary circulation is the difference between the intravascular pressure in the main pulmonary artery and that immediately after the pulmonary circulation in the left atrium.

The intravascular pressures of pulmonary circulation are influenced by hydrostatic pressure created by gravity. The alveolar pressures significantly affect the intra-alveolar capillaries. As alveolar pressure is relatively independent of gravity, the relationships among pulmonary arterial, pulmonary venous and alveolar pressures must also influence the distribution of pulmonary blood flow. West subdivided the lung into four zones with differing patterns of blood flow (Fig. 3). In zone 1, near the apex of lung, wherein the alveolar pressure exceeds both pulmonary arterial and venous pressures (P_a > P_A > P_v), and thus the alveolar vessels are collapsed and there is no pulmonary blood flow. In zone 2, the pulmonary arterial pressure exceeds the alveolar pressure, but alveolar pressure exceeds venous pressures (P_a > P_A > P_v). Under these conditions, the resistance to blood flow is determined by the difference between pulmonary arterial and alveolar pressures, rather than by the expected arterial-venous pressure difference. This behavior has been referred to variously as the waterfall or sludge effect. Also in zone 2, blood flow increases progressively down the lung because of the increasing hydrostatic effect on pulmonary arterial pressure, which increases the driving pressure in this region (pulmonary arterial pressure minus alveolar pressure).

In zone 3, the pulmonary venous pressure exceeds alveolar pressures (P_v > P_A > P_a), and blood flow is dependent on the pressure difference between P_v and P_a, and is maximal.
There is also a progressive increase in perfusion because of the progressive "distension" of vessels due to increase in P_a and P_v, while P_A remains constant. In *zone 4*, the relationships between intravascular and alveolar pressures are same as in *zone 3*, but the blood flow decreases slightly. *Zone 4* occurs in the lowermost region of the upright human lung and diminishes as lung volume increases. Conversely, as lung volume decreases, this region of reduced blood flow extends farther and farther up the lung, so that at FRC blood flow decreases progressively down the bottom half of the lung. At residual volume, *zone 4* extends nearly all the way up the lung, so that blood flow at the apex exceeds that at the base. This condition cannot be explained by the interactions among the pulmonary arterial, venous and alveolar pressures. Instead, the reduced blood flow in *zone 4* is probably due to the narrowing of extra-alveolar vessels at the lung base that result from lower lung inflation due to airways closing down at the "closing volume". The increased contribution of extra-alveolar vessels to pulmonary vascular resistance results in the presence of a zone of reduced blood flow in that region. *Zone 4* would be expected to increase in the presence of interstitial pulmonary edema, because the edematous fluid increases interstitial pressure in the vascular sheath and thereby narrows the extra-alveolar vessels. This is a plausible mechanism for the inverted distribution of blood flow (cephalization of pulmonary vasculature on chest X-ray) in pulmonary edema.

Not all the inhomogeneity of blood flow in the lung can be explained by gravitational effects. Indirect measurements of inhomogeneity (monitoring the magnitude of cardiogenic oscillations on the expired carbon dioxide tracing) of pulmonary blood flow have been made in astronauts in space shuttles, and a striking reduction in inhomogeneity of blood flow was detected during weightlessness compared with that observed in the upright posture before or after the flight. Interestingly, substantial inhomogeneity of blood flow still remained, indicating that some gravity-independent mechanism was also present. Another situation where the gravitational model fails is the situation of prone position ventilation, where the perfusion is probably more homogeneous and not dependent on gravity.

DIFFUSION

Diffusion is the rate at which oxygen from alveolus is transferred across the alveolocapillary barrier to combine with hemoglobin in the red blood cells of pulmonary capillaries. The situation in lungs can be visualized as a two chamber model with different partial pressures of oxygen and a liquid barrier separating the two. The transfer of gases from the alveoli to the capillary blood during the pulmonary transit time of 0.75 seconds depends on their reaction with hemoglobin in the blood. For example, nitrous oxide (N_2O) does not react, and reaches equilibrium in about 0.1 seconds. In this situation, the amount of N_2O taken up is not limited by diffusion, but by the amount of blood flowing through the pulmonary capillaries, i.e. it is flow-limited.
On the other hand, carbon monoxide (CO) is taken up by the hemoglobin in the red blood cells at such a high rate that the partial pressure of CO in the capillaries stays very low and equilibrium is not reached in 0.75 seconds till the blood is in the pulmonary capillaries. Therefore, the transfer of CO is not limited by perfusion at rest and instead is diffusion-limited. Oxygen is intermediate between N₂O and CO; it is taken up by hemoglobin, but much less avidly than CO, and it reaches equilibrium with capillary blood in about 0.3 seconds. Thus, its uptake is also perfusion-limited. Diffusing capacity of the lung for a given gas is directly proportionate to the surface area of the alveolo-capillary membrane and inversely proportionate to its thickness. The factors that influence the movement of gas from the area of higher partial pressure (alveolus) to the area of low partial pressure (capillaries) are governed by the Fick’s law:

\[V = \frac{Ad}{T (P_1 - P_2)} \]

where

- \(V \) = volume of gas diffusing per unit time (mL/minute)
- \(A \) = area available for diffusion (cm²)
- \(P_1 - P_2 \) = pressure difference of gas on two sides (mm Hg)
- \(d \) = diffusion coefficient of the barrier (cm²/minute/mm Hg)

This diffusion coefficient \(d \) is further related to the solubility of the gas within the liquid barrier and the square root of the molecular weight of the gas. Other factors being constant, driving pressure is the most important factor determining flow of oxygen across the alveolo-capillary membrane. When this pressure falls, such as at high altitudes, the oxygen delivery to the tissues becomes diffusion limited. Similarly, diffusion is inversely proportional to the thickness of the membrane.

Although diffusion is reduced in the presence of thickened alveolo-capillary membrane (e.g. interstitial lung disease) or the loss of gas exchange areas (e.g. chronic obstructive airway disease); it is rarely the sole factor responsible for hypoxemia encountered in these conditions. This is because the transfer of oxygen and carbon dioxide is perfusion limited. The normal capillary transit time across the alveolar walls is usually 0.75 seconds, but in healthy individuals only 0.25 seconds is required for gas exchange to be completed. Thus, there is an adequate time for gas exchange to occur even in the presence of a diffusion defect. The gas exchange becomes diffusion dependent during conditions, which increase cardiac output, such as exercise, anxiety, etc. when the capillary transit time is significantly reduced.

VENTILATION-PERFUSION (V/Q) RELATIONSHIPS

The ratio of pulmonary ventilation to pulmonary blood flow for the whole lung at rest is about 0.8 to 1 (4-6 L/minute ventilation divided by 5-6 L/minute blood flow), and this matching of distribution of ventilation and perfusion is the most important determinant of gas exchange. The ventilation-perfusion mismatch is the final common pathway to cause hypoxemia in most pulmonary diseases (Fig. 5). An area of lung that is well perfused, but under ventilated acts as a right to left shunt (physiological shunt) whereas an area that is well ventilated, but under perfused acts like a dead space (physiological dead space). The spectrum of V/Q ratios in a healthy lung would vary between zero (perfused, but not ventilated) to infinity (ventilated, but not perfused).

The ideal V/Q ratio of one indicates perfectly matched ventilation and perfusion. Although V/Q mismatch includes both physiologic shunt and physiologic dead space, but in clinical parlance, the term generally denotes physiologic shunt as physiologic dead space is rarely, if ever, the cause of hypoxemia. In an alveolar-capillary unit with a V/Q ratio of 0 (physiologic shunt), the blood leaving the unit has the composition of mixed venous blood entering the pulmonary capillaries, i.e. PO₂ of 40 mm Hg and PCO₂ of 46 mm Hg whereas in an alveolar-capillary unit with a high V/Q ratio (physiologic dead space) the small amount of blood leaving the unit has partial pressures of O₂ and CO₂ are 150 mm Hg and 0 mm Hg approaching the composition of inspired gas.

Because of the sigmoid shape of the oxyhemoglobin dissociation curve, it is important to differentiate between the partial pressure and the content of oxygen in the blood. Hemoglobin is almost fully (> 90%) saturated at a PO₂ of 60 mm Hg, and little additional O₂ is carried by hemoglobin even with a substantial elevation of PO₂ above 60 mm Hg. On the other hand, significant O₂ desaturation of hemoglobin occurs once PO₂ falls below 60 mm Hg and onto the steep descending limb of the curve. As a result, blood coming from regions of the lung with a high V/Q ratio and a high PO₂ has only a small elevation in O₂ content and cannot compensate for blood coming from regions with a low V/Q ratio and a low PO₂ which has a significantly decreased O₂ content. Although V/Q mismatching can influence PCO₂, this effect is
less marked and is often overcome by an increase in overall minute ventilation.

The alveolar PO_2 appears to be the most important factor involved in regulating the distribution of ventilation-perfusion within the lung. In this respect, hypoxic pulmonary vasoconstriction can be considered as part of a negative feedback loop. For example, in lung units with low V/Q ratios, there is a fall in local alveolar PO_2 and constriction of associated microcirculation reduces the local pulmonary blood flow. This tends to restore the local V/Q ratio toward its normal value. This effect can be appreciated in the residents of high altitudes, who are exposed constantly to lower ambient O_2 concentrations. Residents of high altitudes have better V/Q matching than sea level residents, as reflected by a smaller alveolar-arterial PO_2 difference.

The intensity of hypoxic pulmonary vasoconstriction varies among different lung regions, and probably depends on the smooth muscle tone in different vessels. More recently, a role for nitric oxide in regulating local ventilation-perfusion matching has been suggested as nitric oxide is a selective pulmonary vasodilator (no systemic effects), and inhibits hypoxic pulmonary vasoconstriction. Theoretically, the inhalation of nitric oxide can cause selective pulmonary vasodilation in adequately ventilated areas and improve gas exchange. The nitric oxide-mediated mechanism may also be important in patients with inflammatory lung diseases, in whom the production of nitric oxide is increased. The loss of local hypoxic vasoconstriction would worsen ventilation-perfusion mismatch.

CONTROL OF VENTILATION

The active inspiratory process facilitates expansion of the lungs. It involves contraction of intercostal muscles and diaphragm to move the chest upward and outward. By doing so the intrathoracic and alveolar pressures are lowered and the flow of the air into the lungs is facilitated. Expiration is usually a passive process. The lungs and chest collapse under their own elastic recoil and raise the intrathoracic and alveolar pressures. The air then flows out of the lungs.

Ventilation is controlled tightly through three components—sensors (or receptors), central controllers and effectors (muscles of respiration). The respiratory control mechanisms operate through both neuronal and chemical receptors. While the former are peripherally located (airway, lung, chest wall, blood vessels), the latter are both peripherally and centrally located. Control centers in the brain put together information from all these receptors, and fine-tune the neuronal drive to respiratory musculature, which in turn controls the level of ventilation.

Neuronal Receptors

The neuronal receptors vary greatly in their location and response characteristics. Some are rapidly adaptive to change in lung volume or irritation by noxious agents or inflammatory mediators. Receptor signals are mediated through the vagus nerve to the respiratory center, and have variable effects like increase in ventilation, cough and/or bronchoconstriction. Others like stretch receptors or muscle spindles in airway smooth muscles adapt slowly to lung volume changes. These get activated by lung over distension and signal the respiratory center to discontinue the stimulation of the inspiratory muscles, allowing expiration to begin. This response is called the inflation (Herring-Breuer) reflex. Juxtacapillary (or J) receptors located in alveolar walls sense the engorgement of the pulmonary capillaries and cause rapid shallow breathing.

Peripheral Chemoreceptors

The main location for peripheral chemoreceptors is in aortic and carotid bodies, although they may be present in other areas as well. Carotid bodies are located bilaterally at the bifurcation of common carotid arteries, and are the major receptors in adult life. They mainly respond to arterial hypoxemia, and to hypercapnia, by transmitting signals to nucleus tractus solitarius through ninth cranial nerve, resulting in hyperventilation. Other chemoreceptors in central nervous system adjust ventilation to maintain acid-base homeostasis. The more important receptors are located near central medullary surface and retrotrapezoid nucleus. These receptors respond to pH changes in the cerebrospinal fluid resulting from the diffusion of carbon dioxide through the blood-brain barrier.

Respiratory Center

The various positive and negative signals from all these receptors are integrated at the level of respiratory control centers in the medulla and pons, and result in appropriate modifications in frequency, depth and/or pattern of respiration. The dorsal medullary inspiratory center generates rhythmic neuronal impulses that result in contraction of inspiratory muscles. Exhalation is largely a passive process, though it can be actively controlled through ventral respiratory group of neurons in the medulla. Medullary center is controlled by pontine centers. Pneumotaxic center is located in the dorsal and superior pontine area, and is inhibitory to the medullary ventilatory drive. Apneustic area in the lower pons can stimulate respiration if the pneumotaxic center is blocked, but its function is not well understood.

Ventilatory Responses

The ventilatory response to carbon dioxide elevation in blood is largely centrally mediated and results in a proportional increase in ventilation that attempts to correct the anomaly, although normocapnia may not be achieved. Relationship between respiratory minute volume and the alveolar carbon dioxide is essentially linear. The ventilatory response to
hypoxia is not so linear. Although mild hypoxemia increases discharge from the peripheral chemoreceptors, the corresponding hypocapnia from any increase in ventilation, as well as a slight alkalosis from the lesser amount of oxyhemoglobin, prevent any sustained hyperventilation. An increase in minute ventilation is only seen when arterial oxygenation falls substantially. The composite effects of hypoxemia, hypercarbia and acidosis are much more complex.

BIBLIOGRAPHY